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Outline

A definition of actual causality in terms of structural equations

(which uses counterfactuals) [H & Pearl]

Whether

�

causes

�

is relative to a model.

This moves the debate about causality to the right arena: do

you have the right structural model?

Showing that this definition handles well many standard

problematic examples in the literature.

Extending approach to responsibility and blame [Chocker & H]

Aplications to program testing [Chockler, H, & Kupferman]
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Causality: Intuition

[Lewis:] Basic intuition involves counterfactuals

If

�

hadn’t happened,

�

would not have happened

Typical (well-known problem): preemption

[Hall] Suzy and Billy both pick up rocks and throw them at a

bottle. Suzy’s rock gets there first, shattering the bottle. Since

both throws are perfectly accurate, Billy’s would have

shattered the bottle if Suzy’s throw had not preempted it.
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So why is Suzy’s throw the cause?

If Suzy hadn’t thrown under the contingency that Billy also didn’t

throw, then the bottle would have shattered.

But then why isn’t Billy’s throw also a cause?

Because it didn’t hit the bottle.

More generally, must restrict contingencies somehow.
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Structural Equations

Idea: World described by random variables that affect each other

This effect is modeled by structural equations.

Split the random variables into

exogenous variables

values are taken as given, determined by factors outside model

endogenous variables.

Structural equations describe the values of endogenous variables in

terms of exogenous variables and other endogenous variables.

Have an equation for each variable

does not mean !
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Example1: Arsonists

Two arsonists drop lit matches in different parts of a dry forest, and both

cause trees to start burning. Consider two scenarios.

1. Disjunctive scenario: either match by itself suffices to burn down

the whole forest.

2. Conjunctive scenario: both matches are necessary to burn down

the forest
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Arsonist Scenarios

Same causal network for both

scenarios: ML1 ML2

U

FB
endogenous variables ML �, � 
 ��� �

:

ML � 
 �

iff arsonist

�

drops a match

exogenous variable

� 
 ���� ��� �

� � 
 �

iff arsonist

�
intends to start a fire.

endogenous variable FB (forest burns down).

For the disjunctive scenario FB 
 ML� �

ML�

For the conjunctive scenario FB 
 ML� �

ML�
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Causalmodels

A causal model is a tuple

��� ��! " # $

:�

: set of exogenous variables"

: set of endogenous variables#

: set of structural equations (one for each

%& "

):

(Some features of a) causal model can be described by a causal

network:

Like Bayesian network, but edges interpreted causally

We restrict to causal models where all equations have a unique solution

for each context :

automatically holds in acyclic causal networks.
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Reasoningabout causality

Syntax: We use the following language:

primitive events

4�5 6

7 8 4 9 86 :3; (“after setting

8 4

to

86, ; holds”)

close off under conjunction and negation.

Semantics:

if in unique solution to equations in

if .

is the causal model that results from

deleting the equations for variables and

getting new equation for by setting variables in to
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Defining Causality

We want to define “

Z

is the cause of

[

” (in context

\3] of model

^
).

Assuming all relevant facts—structural model and context—given.

Which events are the causes?

We restrict causes to conjunctions of primitive events:

_a` b c ` dfe e e d _ag b c g

usually abbreviated as

\ _ b \ce
One conjunct enough [Eiter-Lukasiewicz]

No need for probability, since everything given.

Arbitrary Boolean combinations h of primitive events can be caused.
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(Preliminary) formal definition

ikj�l i3m is an actual cause of n in situation

op q i3r s if

AC1.

op q ir s tl o ikj�l i3m su n.
Both

ikj�l i3m and n are true in the actual world.
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(Preliminary) formal definition

AC2.

v

partition

w xzyF{ xz|}

of

~

with

xz�� xzy

and setting
w x3� � { x3� �} of the

variables in

w xk� { xk|}

such that if

w� { �} ��� xy � x3� � , then

(a)

w� { x�} �� � x� � x � � { xk| � x � � ��� �.
changing

xk�

can change �
standard counterfactual clause, except we allow

x | � x � �

[structural contingency]

(b) for all .

describes the active causal process.

Setting back to forces to hold, even if and

some variables in the active causal process have their

original values.
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(Preliminary) formal definition

AC3.

©kª

is minimal; no subset of

©ª

satisfies conditions AC1 and AC2.

No irrelevant conjuncts.

Don’t want “dropping match and sneezing” to be a cause of the

forest fire if just “dropping match” is.
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ArsonistsRevisited

Each of ML « ¬ ­

and ML ® ¬ ­

is a cause of FB ¬ ­

in both scenarios.

To show that ML « ¬ ­

is a cause in the disjunctive scenario: let¯k° ¬ ±

ML «² FB

³

, so

¯k´ ¬ ±

ML ® ³.
setting ML ® ¬ µ

satisfies AC2.

ML « ¬ µ ¶

FB ¬ µ

; ML « ¬ ­ ¶
FB ¬ ­

.

Need to use the structural contingency ML ® ¬ µ

.

If ML ® ¬ ­

, then FB ¬ ­
, independent of ML « .

Don’t need structural contingency in the conjunctive scenario.
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Example2: Preemption

[Hall:] Suzy and Billy both pick up rocks and throw them at a bottle.

Suzy’s rock gets there first, shattering the bottle. Since both throws are

perfectly accurate, Billy’s would have shattered the bottle if Suzy’s throw

had not preempted it.

A naive causal model looks just like the arsonist model:

ST BT

U

BS

ST for “Suzy throws” (either 0 or 1)

BT for “Billy throws” (either 0 or 1)

BS for “bottle shatters” (either 0 or 1)

Problem: BT and ST play symmetric roles; nothing distinguishes them.

Both BT and ST are causes in this model.
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A Better Model

A more useful choice is to add two new random variables to the model:

BH for “Billy’s rock hits the (intact) bottle”, with values 0 (it doesn’t)

and 1 (it does); and

SH for “Suzy’s rock hits the bottle”, again with values 0 and 1.

Here is the causal network:

ST

BT

BS

SH

BH

Now ST ¹ º

is a cause of BS ¹ º

, but BT ¹ º

is not (it fails AC2).

Moral: If there are redundant (potential) causes, we need a

variable that distinguishes the two.
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Example3: Medical Treatment

[Hall:] Billy contracts a serious but nonfatal disease. He is treated on

Monday, so is fine Tuesday morning. Had Monday’s doctor forgotten to

treat Billy, Tuesday’s doctor would have treated him, and he would have

been fine Wednesday morning. The catch: one dose of medication is

harmless, but two doses are lethal.

Is the fact that Tuesday’s doctor did not treat Billy the cause of him

being alive (and recovered) on Wednesday morning?
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The causal model has three random variables:

MT (Monday treatment): 1–yes; 0–no

TT (Tuesday treatment): 1–yes; 0–no

BMC (Billy’s medical condition):

0–OK Tues. and Wed. morning,

1–sick Tues. morning, OK Wed. morning,

2–sick both Tues. and Wed. morning,

3–OK Tues. morning, dead Wed. morning

The equations are obvious.
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What can we say about causality?

MT » ¼

is a cause of BMC » ½

and of TT » ½
TT » ½

is a cause of Billy’s being alive

(BMC » ½¾

BMC » ¼ ¾

BMC » ¿
).

MT » ¼

is not a cause of Billy’s being alive (it fails condition

AC2(a))

Conclusion: causality is not transitive nor does it satisfy right

weakening.

Lewis assumes right weakening and forces transitivity.
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Degreeof Responsibility

The definition of causality can be extended to deal with responsibility

and blame (and explanation).

Causality is a 0-1 notion: either

Å

causes

Æ

or it doesn’t

Can easily extend to talking about the probability that

Å

causes

Æ

Put a probability on contexts

But not all causes are equal:

Suppose

Æ

wins an election against

Ç

by a vote of 11–0.

Each voter for B is a cause of B’s winning.

However, it seems that their degree of responsibility should not be

the same as in the case that the vote is 6–5.
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Voting Example

There are 11 voters and an outcome, so 12 random variables:ÈaÉ Ê Ë ÌÍ

if voter

Î

voted for G/B, for

Î Ê Í�ÏÐ Ð Ð Ï Í Í
;Ñ Ê Í if B has a majority, otherwise 0.ÈÓÒ Ê Í is a cause of

Ñ Ê Í in a context where everyone votes for B.

If

ÈÓÒÏ ÈÓÔÏÐ Ð Ð Ï ÈÓÕ are set to 0, then AC2 holds.ÈaÒ Ê Í is also a cause of

Ñ Ê Í in a context where only

ÈaÒÏÐ Ð Ð Ï ÈÕ

vote for B, so the vote is 6–5.

Now only have to change the value of

ÈaÒ in AC2

Key idea: use the number of variables whose value has to change in

AC2 as a measure of degree of responsibility.
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Responsibility: Formal Definition

The degree of responsibility of

Ö�× Ø for Ù in ÚÛ Ü Ý3Þ ß isà

if

Ö × Ø is not a cause of Ù in Ú Û Ü Ý Þ ß ;

á â Úã ä á ß

if

Ö�× Ø is a cause of Ù in Ú Û Ü Ý Þ ß and there exists a

partition

Ú Ýkå Ü Ýkæ ß

and setting

Ú Ø ç Ü Ý3è ç ß for which AC2 holds and

(1)

ã

variables in

Ýkæ

have different values in

Ý3è ç than they do in the

context

Ý Þ

(2) We can’t do better than
ã

there is no partition
Ú Ýkå ç Ü Ýkæ ç ß

and setting

Ú Ø ç ç Ü Ý3è ç ç ß

satisfying AC2 such that only

ã çé ã

variables have different

values in
Ý3è ç ç than they do the context

Ý Þ.
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Responsibility: Formal Definition

The degree of responsibility of

ê�ë ì for í in îï ð ñ3ò ó isô

if

ê ë ì is not a cause of í in î ï ð ñ ò ó ;

õ ö î÷ ø õ ó

if

ê�ë ì is a cause of í in î ï ð ñ ò ó and there exists a

partition

î ñkù ð ñkú ó

and setting

î ì û ð ñ3ü û ó for which AC2 holds and

(1)

÷

variables in

ñkú

have different values in

ñ3ü û than they do in the

context

ñ ò

(2) We can’t do better than
÷

Example:

If vote is 11–0,
ýÓþ has degree of responsibility

õ öÿ

If vote is 6–5,
ý þ has degree of responsibility 1
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Degreeof Blame

When determining responsibility, it is assumed that everything relevant

about the facts of the world and how the world works is known.

In the voting example, the vote is assumed known; no uncertainty.

Also true for causality.

Sometime we want to take an agent’s epistemic state into account:

A doctor’s use of a drug to treat a patient may have been the cause

of a patient’s death

The doctor then has degree of responsibility 1.

But what if he had no idea there would be adverse side effects?

He may then not be to blame for the death
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In legal reasoning, what matters is not only what he did know, but what

he should have known

We define a notion of degree of blame relative to an epistemic state

The epistemic state is a set of situations

the situations the agents considers possible

�

a probability distribution on them

Roughly speaking, the degree of blame is the expected degree of

responsibility, taken over the situations the agent considers

possible.
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Blame: Example

Consider a firing squad with 10 excellent marksmen.

Only one of them has live bullets in his rifle; the rest have blanks.

The marksmen do not know which of them has the live bullets.

The marksmen shoot at the prisoner and he dies.

Then

Only marksman with the live bullets is the cause of death.

That marksman has degree of responsibility 1 for the death.

The others have degree of responsibility 0.

Each marksmen has degree of blame

This is the expected degree of responsibility.
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Application: Coverage

Model checking tells you if a program satisfies a specification.

If algorithm says no, it provides a counterexample.

If algorithm says yes, then it terminates

Problem: what if there’s an error in the spec?

Recent emphasis on various sanity checks

Coverage estimation: which parts of the program are actually

relevant for the spec.

An “unused” part of the program may signal an error.
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Coverageand Causality

Key observation: coverage is like causality

Which parts of the program cause the spec to be satisfied?

We can also measure the degree of responsibility of a node in a

circuit for satisfying a spec

A low degree of responsibility might indicate a problem—part of

the circuit is not so important

A high degree of responsibility says the node is critical—this

could be a problem for fault tolerance

Groce et al. [2006] define a notion of error explanation also based on

counterfactuals: is a line of code a cause for the error?

Also can be extended by responsibility
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Conclusion

The structural models approach can capture a number of intuitions

rather naturally.

The approach can be extended to deal with

explanation

degree of responsibility

blame

These notions can be applied to verification.

There’s much more that can be done!
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