Simulation + Hypothesis Testing for Solving the Probabilistic Model Checking Problem

Axel Legay and Mahesh Viswanathan

September 11, 2009
2 Introduction

Objective

Our Objectives

We will have four objectives:

1. Getting more knowledge about how to verify stochastic systems;
2. Studying how statistical techniques can be applied in this area;
3. New applications (models, properties);
4. Going further than algebraic approaches (PRISM, LIQOR, ...).

Stochastic Systems

Stochastic Systems (1)

Definition 1. A stochastic system is a process that evolves over time, and whose evolution can be predicted in terms of probability (pure) and nondeterministic choices (nonpure).

Where can they be found?
• Embedded systems;
• Economy;
• Networking;
• Systems Biology;
• ...

Stochastic Systems (2) : Models

Those we consider
• Any model of pure stochastic systems;
• Example : Markov Chains.

Those we won’t consider
• Any model which mixes nondeterministic and probabilistic choices;
• Example : Markov Decision Processes (MDPs).

Verifying Stochastic Systems

Verification Process

Question

Does $S \models P_{\geq \theta}(\phi)$?

where :
• S is a Stochastic system;
• Executions of S are sequences of states (random variables);
• ϕ is some execution-based property (specification language);
• $P(X)$ means : “the probability for X to happen”;
• θ is a probability threshold.
3 The Algebraic Approach

Outline

Contents

Description of the approach

Main idea

Overview

• Assume the existence of a probability space;
• Compute the probability p for S to satisfy ϕ;
• Compare p with θ.

Difficulty

Algorithms to compute p.

Advantages and Disadvantages

Advantages

• High accuracy in result;
• Exists for nonpure models such as MDPs;
• Well-established tools: PRISM, LIQUOR, PMAUD, ...
• ...

Disadvantages

There are at least 5 disadvantages

1. Memory intensive;
2. Limited to certain classes of systems and properties (finite-state, ..);
3. No unique solution;
4. Complex algorithms:

One Difficulty: How to find efficient data structures;

5. Difficult to parallelize.

4 Statistical Model Checking

Outline

Contents

Description of the approach

Learning from a Simple Problem

A (VERY) simple problem

- Consider a machine that flips a (possibly biased) coin;
- Is the probability \(p \) of having a head greater or equal to some \(\theta \)?

A solution

- Do several flips and deduce the answer from them;
- If the number of flips is infinite, our answer will be correct up to some type error.

This is the statistical model checking approach!

Hypothesis Testing

Test \(P(\text{having a head}) \geq \theta \) against \(P(\text{having a head}) < \theta \)

With (Type error):

1. \(\alpha \) : the probability to accept \(H_1 \) while \(H_0 \) is true;
2. \(\beta \) : the probability to accept \(H_0 \) while \(H_1 \) is true.
Performance of Test

\[\text{Proba. of accepting } H : p \geq \theta \]

\[\beta \]

\[\theta \]

False positives

Actual probability \(p \)

Needs an infinite number of samples to get ideal performances!

Summary

We want to test:

\[p \in [\theta - \delta, \theta + \delta] \]

If \(p \in [\theta - \delta, \theta + \delta] \), we say we are \textit{indifferent} to know if \(p \geq \theta \).
\[H_0 : p \geq p_0 \text{ against } H_1 : p < p_1, \text{ where } p_0 = \theta + \delta \text{ and } p_1 = \theta - \delta. \]

With:

- Type errors \(\alpha \) and \(\beta \), and
- Indifference region \(2\delta \).

Bernoulli Variables for experiments

Bernoulli variable \(X_i \) of parameter \(p \)

- Takes two values: \(X_i = 0 \) or \(X_i = 1 \);
- \(P[X_i = 1] = p \) and \(P[X_i = 0] = 1 - p \);
- Realization is denoted \(x_i \).

Experiments

- We assume independent trials;
- We can generate as much trials as we want;
- \(p \) is the probability to get a head;
- Associate a bernoulli variable \(X_i \) to each trial;
- \(X_i = 1 \) iff the trial is a tail.

Two Algorithms

Algorithm 1 : Single Sampling plan

- Pre-compute a number \(n \) of experiments;
- \(n \) depends on \(\delta, \alpha, \) and \(\beta \).

Algorithm 2
Basically a on-the-fly version of the Single Sampling Plan (in fact, this is much more :-)!)}
Single Sampling plan

Single Sampling plan: Principles

- Choose \(n \) and \(c \) with \(c \leq n \);
- \(n \) observations \(x_1, \ldots, x_n \) for \(n \) samplings \(X_1, \ldots, X_n \);
- \(Y = \sum_{i=1}^{n} x_i \);
- Accept \(H_0 \) if \(Y \geq c \) and \(H_1 \) otherwise;

Difficulty: Find \(n \) and \(c \) such that \(\alpha \) and \(\beta \) are satisfied

Single Sampling plan: \(\alpha \) and \(\beta \)

Definition 2. \(P[Y \leq c] = F(c; n; p) = \sum_{i=0}^{c} C^n_i p^i (1-p)^{n-i} \).

Definition 3. \(F(c; n; \theta) \): probability to accept \(H_1 \).

Definition 4.
- \(F(c; n; \theta + \delta) \leq \alpha \);
- \(1 - F(c, n; \theta - \delta) \leq \beta \).

Single Sampling plan: Disadvantages

- Difficult to find \(c \) and \(n \): No unique solution;
- Difficult to minimize \(n \);

Approximation algorithms exist (Haakan Youness).

Better for black-box systems (next part of the tutorial).

Optimality (Hasting)

<table>
<thead>
<tr>
<th>Thresholds</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta - \delta = 0)</td>
<td>(\theta + \delta = 1)</td>
</tr>
<tr>
<td>(\theta - \delta = 0)</td>
<td>(\theta + \delta < 1)</td>
</tr>
<tr>
<td>(\theta - \delta > 0)</td>
<td>(\theta + \delta = 1)</td>
</tr>
</tbody>
</table>
Sequential Hypothesis Testing

- Check hypothesis after each sample and stop as soon as possible
- We can find an acceptance line and a rejection line given $\alpha, \beta, \theta, \delta$.

Wald’s Testing

Compute

$$W = \prod_{i=1}^{m} \frac{Pr(X_i = x_i \mid p = \theta - \delta)}{Pr(X_i = x_i \mid p = \theta + \delta)} = \frac{(\theta - \delta)^{d_m} (1 - \theta + \delta)^{m-d_m}}{(\theta + \delta)^{d_m} (1 - \theta - \delta)^{m-d_m}}, \quad (1)$$

where $d_m = \sum_{i=1}^{m} x_i$. Stop when:

- $W \geq (1 - \beta)/\alpha : H_1$ is accepted;
- $W \leq \beta/(1 - \alpha) : H_0$ is accepted.

More Mathematics

- In theory: the test does not guarantee α and β!
- New parameters α' and β' such that
 - $\alpha' \leq \frac{\alpha}{1-\beta}$ and $\beta' \leq \frac{\beta}{1-\alpha}$
\[\alpha' + \beta' \leq \alpha + \beta; \]

- In practice: one observes that \(\alpha \) and \(\beta \) are almost often guarantee, and it may even be better!

Example 5. Let \(p_0 = 0.5, p_1 = 0.3, \alpha = 0.2, \beta = 0.1 \):

- In theory: \(\alpha' \leq \frac{0.2}{0.3} = 0.222 \ldots \) and \(\beta' \leq \frac{0.1}{0.8} = 0.125 \);
- Computer simulation: \(\alpha' = 0.175 \) and \(\beta' = 0.082 \).

Performances (1)

- Single sampling plan can be better than SPRT!
- SPRT is, in practice, more efficient;
- Expected sample size \(E_p \) (Wald’s formula):
 - \(E_p \) minimizes \(E_p \) at \(\theta + \delta \) and \(\theta - \delta \);
 - \(E_p \) increases from 0 to \(\theta - \delta \);
 - \(E_p \) decreases from \(\theta + \delta \) to 1;
 - Between \(\theta - \delta \) and \(\theta + \delta \): increase and then decrease.

Performances (2) : SPRT

<table>
<thead>
<tr>
<th>Indifference region</th>
<th>Number of executions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2\delta)</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>55</td>
</tr>
<tr>
<td>0.05</td>
<td>106</td>
</tr>
<tr>
<td>0.02</td>
<td>228</td>
</tr>
<tr>
<td>0.01</td>
<td>627</td>
</tr>
<tr>
<td>0.005</td>
<td>1056</td>
</tr>
</tbody>
</table>

\((\alpha = \beta = 0.02) \)

- \(m \) increases linearly if \(\delta \) decreases.
Performances (3) : SPRT

<table>
<thead>
<tr>
<th>Test strength $\alpha(=\beta)$</th>
<th>Number of executions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1e^{-2}$</td>
<td>335</td>
</tr>
<tr>
<td>$1e^{-4}$</td>
<td>502</td>
</tr>
<tr>
<td>$1e^{-6}$</td>
<td>857</td>
</tr>
<tr>
<td>$1e^{-8}$</td>
<td>1301</td>
</tr>
<tr>
<td>$1e^{-10}$</td>
<td>1467</td>
</tr>
</tbody>
</table>

Number of trajectories against $\alpha (\beta = \alpha$ and $2\delta = 0.02)$

- m increases logarithmically if α and/or β decrease.

From Flipping a coin to Model Checking

Fact
Flipping a coin is nothing more than testing whether a finite execution satisfies a property.

Results
Consequence : Wald’s testing directly applies to model check properties of white-box stochastic systems.

Properties
- *Natural* : those that can be checked on finite execution;
- *Going further* : Some properties on infinite executions:

Next part of the tutorial.

Why are nonpure systems forbidden?

- We sample a unique distribution;
- Sampling several distributions would require to distinguish between them;
- This cannot be done on the sole basis of running the system.
Advantages

• Easy to parallelize (independent sampling, unbiased distributed sampling);
• Independent of system’s size;
• Independent of system’s probability distribution;
• Easy to trade accuracy for speed;
• Uniform approach;
• Easy to implement:
 – In most cases, one only need to implement a “trace checker” that tests whether an execution satisfies a given property;
 – No need for complex data structures.

A Note on Parallelization

• Observations are generated by different machines;
• Observations must be independent;:
 – Using different seeds is not sufficient: it only determines initial numbers, not the way the sequence is generated;
 – Solution:

 encode process ID directly is the generator.

• Slave - master : experiments are collected in ring-order.

5 Experiments

2 types of experiments

• ∆ – Σ Modulator (conversion: analogue to digital);
• Systems biology (briefly).
Modulator

Model Checking mixed-signal circuits
- Mature for digital designs but still new for analog and mixed design
- Difficult due to continuous and hybrid state variables

Probabilistic Model Checking
- Stochastic systems and/or stochastic uncertainties
- Exact solution is a difficult problem in general

Statistical Approach
- Use of numerical simulation
- Approximate solution with bounds on errors

Systems and Logics with Signals

Outline

Contents

Logics: LTL formulas
Let B be a set of predicates. The following defines an LTL formula:

$$\phi ::= T | F | b \in B | \neg \phi | \phi_1 \lor \phi_2 | \bigcirc \phi | \phi_1 U \phi_2.$$

Let $\omega = s_1 s_2 ... s_k$, $|\omega| = k$, $\omega^t = s_i s_{i+1} ... s_k$, $\omega(i) = s_i$ and L be a mapping from S to 2^B. We have:

- $\omega \models T$, $\omega \not\models F$ and $\omega \models \neg \phi$ iff $\omega \not\models \phi$
- $\omega \models b$ with $b \in B$ iff $b \in L(\omega(0))$
- $\omega \models \phi_1 \lor \phi_2$ iff $\omega \models \phi_1$ or $\omega \models \phi_2$
- $\omega \models \bigcirc \phi$ iff $|\omega| > 1$ and $\omega^1 \models \phi$
- $\omega \models \phi_1 U \phi_2$ iff there exists $0 \leq i \leq |\omega| - 1$ such that $\omega^i \models \phi_2$, and for each $0 \leq j < i$, $\omega^j \models \phi_1$

Additionally, we use the eventually operator \boxdot defined as $\boxdot \phi = F U \phi$. Note that we only consider finite executions.
Logics: Execution Predicates

Definition 6 (Execution Predicate). Let $\Sigma(S)$ be the set of all the executions of an SSDES S. An execution predicate p for S is a mapping $p : \sigma \in \Sigma(S) \mapsto p(\sigma) \in \{T, F\}$.

Example 7. Execution predicate p that decides whether the mean value of the analog signal associated with σ is ≥ 0:

$$p(\sigma) = T \iff \frac{1}{N} \sum_{k=0}^{N-1} \pi_a(\sigma(k)) \geq 0.$$

More complex functionals such as the Fourier transform can be used.

Claim. Let S be an SSDES and ϕ be a Boolean combination of LTL formulas and execution predicates. One can always associate a probability with the set of executions of S that satisfy ϕ.

A Class of Mixed-Signal Circuits: $\Delta – \Sigma$ Modulators

Outline

Contents

$\Delta – \Sigma$ Modulators for Dummies

Analog to Digital converters (ADC)

- Converts analog signal into digital signals
- Used in many electrical devices interfacing with a physical environment

$\Delta – \Sigma$ modulators

- Widely used family of ADCs
- Efficient processing of the *quantization error*, i.e., the difference between the analog input and the digital output

A Simple Discrete-Time $\Delta – \Sigma$ Modulator

Principle Control of quantization error using a feedback loop
- The quantization error is the difference between the input and the output.
- The integrator stores the summation of δs in a state variable x.
- The quantizer produces the output based on the sign of x.

Higher Order $\Delta - \Sigma$ Modulators

- More complex designs use more than one integrator.
- The order of a $\Delta - \Sigma$ modulator is the number of integrators used.
- Beginning from order three, a stability issue appears.
- i.e. the integrators states can reach a saturation threshold compromising the analog to digital conversion.

Experiments with a Third Order $\Delta - \Sigma$ Modulator

Outline

Contents

Questions and Existing Results

First Question
When does saturation occur?

Second Question
Does saturation always imply a bad conversion?

Existing Results
- Hybrid system model;
- Some answer to the first question for a limited horizon;
- Nothing for the second question (*Fourier transform*).

A third order $\Delta - \Sigma$ modulator, Simulink model

- We get a stochastic system by randomly choosing the inputs $u(k)$
- State s_k is the tuple $(u(k), x_1(k), x_2(k), x_3(k), v(k))$
- The next state s_{k+1} is determined by the random choice of $u(k + 1)$ and computed by the Simulink engine
- For all k, $u(k)$ is chosen uniformly in $[-u_{max}, u_{max}]$.

⇒ Statistical analysis for all input signals of amplitude bounded by u_{max}

Saturation Analysis

Probability of saturation occurrence for different values of u_{max}?

- Let $Satur$ be a boolean predicate
- For all state $s = (u, x_1, x_2, x_3, v)$, let $L(s) = \{Satur\}$ iff $|x_3| \geq 1$

We can then evaluate the formula $Pr_{\geq \theta}(\diamond Satur)$.

A tool:

- A routine checking $\sigma \models \diamond Satur$
- The sequential ratio testing algorithm which decides whether $S \models Pr_{\geq \theta}(\phi)$ given θ, α, β and δ
- A simple bisection procedure which tries to maximize the value of θ for which the answer is true
Experimental Results

<table>
<thead>
<tr>
<th>u_{max}</th>
<th>Hypothesis Accepted</th>
<th>Number of executions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>$p \leq 0.1$</td>
<td>416</td>
</tr>
<tr>
<td>0.15</td>
<td>$p \geq 0.0938$</td>
<td>4967</td>
</tr>
<tr>
<td>0.2</td>
<td>$p \geq 0.640625$</td>
<td>17815</td>
</tr>
<tr>
<td>0.25</td>
<td>$p \geq 0.984375$</td>
<td>416</td>
</tr>
<tr>
<td>0.3</td>
<td>$p \geq 1$</td>
<td>688</td>
</tr>
</tbody>
</table>

Table of results for $p = Pr(\sigma \models \diamond \text{Satur})$, with $\alpha = \beta = 1e^{-3}$ and $\delta = 1e^{-2}$

- Consistent with results formally obtained in [Dang Donze Maler 04] but on a much larger horizon (24000 as compared to 31)
- The expected number of simulations grows logarithmically w.r.t. the inverse of α and β and polynomially w.r.t. the inverse of δ

Frequency Domain

- Quantization pushes error towards high frequencies;
- **Suggestion**: Check for quality under small frequencies.
Execution Predicate in the Frequency Domain

- Let \(F_u(\sigma) \) and \(F_v(\sigma) \) be the Fourier Transforms (FTs) of the input signal associated with \(\sigma \).
- Let \(d_{\nu}^{p_0}(\hat{\xi}_1, \hat{\xi}_2) \) be a measure of the distance between two FTs \(\hat{\xi}_1 \) and \(\hat{\xi}_2 \) for frequencies smaller than \(\nu_0 \).
- Then we can derive an execution predicate \(p_f \) such that

\[
p_f(\sigma) = \begin{cases}
T & \text{iff } d_{\nu}^{p_0}(F_u(\sigma), F_v(\sigma)) \leq \epsilon, \\
F \end{cases}
\]

For \(\nu_0 = 100\text{Hz} \) and \(\epsilon \leq .1 \) the predicate discriminates between “correct” and “failed” conversions.

Frequency Domain Predicate, Experimental Results

<table>
<thead>
<tr>
<th>(u_{\text{max}})</th>
<th>Hypothesis Accepted</th>
<th>Number of Executions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>(p \geq 1)</td>
<td>688</td>
</tr>
<tr>
<td>0.9</td>
<td>(p \geq 0.984375)</td>
<td>612</td>
</tr>
<tr>
<td>1.0</td>
<td>(p \geq 0.984375)</td>
<td>1248</td>
</tr>
<tr>
<td>1.1</td>
<td>(p \geq 0.875)</td>
<td>6388</td>
</tr>
<tr>
<td>1.2</td>
<td>(p \geq 0.578125)</td>
<td>15507</td>
</tr>
</tbody>
</table>

Table of results for \(p = Pr(p_f) \), with \(\alpha = \beta = 1e^{-3} \) and \(\delta = 1e^{-2} \)

Experiments Interpretation

The previous results show that

- For \(u_{\text{max}} \geq 0.3 \) the system satisfies \(\diamond \text{Satur} \) with probability 1.
- For \(u_{\text{max}} \leq 0.8 \) the system satisfies \(p_f \) with probability 1 [].

Thus we statistically established that for \(0.3 \leq u_{\text{max}} \leq 0.8 \), the formula \(\diamond \text{Satur} \land p_f \) is satisfied with probability 1, meaning that saturation can occur without a dramatic decrease in the conversion quality [].

This extends the results in [Gupta Krogh Rutenbar 04] and [Dang Donze Maler 04] where it was conservatively assumed that the absence of saturation was necessary for a proper behavior.
Conclusion and Perspectives

Conclusion on $\Delta - \Sigma$ Modulator

Summary

- A framework for the statistical probabilistic Model Checking of mixed-signal circuits
- The simulation-based approach makes it easier to deal with functionals on executions such as the Fourier transform
- Application to a non-trivial case study for which we improved previous results

Future work

- Extension to unbounded execution and dense time using appropriate monitoring techniques
- Logic mixing temporal properties and partial execution predicates
- More precise definitions and specifications for frequency domain properties based on the need of analog designers

System’s Biology

Systems Biology

- In presence of a few species, reactions are defined in terms of stochastic processes;
- In such context, one wants to exercise the master equation that governs system’s evolution.

Definition 8. The master equation: phenomenological set of first-order differential equations describing the time evolution of the probability of a system to occupy each one of a discrete set of states.

Situation

- We want to Solve stochastic equations, but
- Many stochastic equations are numerically intractable!
BionetGen and Gillespie

- BionetGen Toolset:

 Very simple language to model proteins and proteins-proteins interactions:

 * Uses rewriting rules like the k-calculus

- Gillespie algorithm simulates rule applications (Continuous-timed Markov Chains);

- Systems can be big: more than 6 hours for a simulation!

 ⇒ distributed implementation.

BionetGen Language (1)

The language allows to describe

- Molecules and functional;
- States of functional;
- Binding between functional and molecules;
- Chemical reactions;
-

Available at

http://bionetgen.org/index.php/Main_Page

BionetGen Language (2)

Example 9. Molecule

R(1,d,Y-P)

Example 10. Chemical reaction

L(r) + R(1,d) ⇌ L(r!1).R(1!1,d) kp1, km1
Biolab

- Combine BionetGen with SPRT;
- A logic for biologist;
- Formal validation of observations (T-Cell model, ...).

Architecture of BIOLAB

The T-Cell model

- Detect antigen and should react properly;
Should not react to non pathological proteins;

Property: the system can alternate between reactive and nonreactive states.

6 Bayesian Model Checking

Bayesian Testing

1. Prior probability (informative vs. non-informative) on H_0 and H_1;

2. Prior information is used to decrease the number of experiments;

3. Bayesian Testing is more driven towards compound hypothesis than statistical hypothesis testing!

Future Work: Bayesian risk and nested operators.

Non Informative Prior

<table>
<thead>
<tr>
<th>θ</th>
<th>Bayes Factor Test</th>
<th>$SPRT (\delta = 0.01)$</th>
<th>$SPRT (\delta = 0.001)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H_1</td>
<td>H_0</td>
<td>H_1</td>
</tr>
<tr>
<td>0.95</td>
<td>2</td>
<td>275</td>
<td>349</td>
</tr>
<tr>
<td>0.9</td>
<td>8</td>
<td>610</td>
<td>608</td>
</tr>
<tr>
<td>0.8</td>
<td>35*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.7</td>
<td>81*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.6</td>
<td>591*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.5</td>
<td>272</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.4</td>
<td>156</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.3</td>
<td>16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.2</td>
<td>5</td>
<td>909</td>
<td>929</td>
</tr>
<tr>
<td>0.1</td>
<td>9</td>
<td>446</td>
<td>468</td>
</tr>
<tr>
<td>0.05</td>
<td>2</td>
<td>201</td>
<td>189</td>
</tr>
</tbody>
</table>

7 What’s next?

Next part of the tutorial:
• Model Checking PCTL\(^*\) using hypothesis testing;
• Nested probability operators;
• Black-box systems.
1 Overview

Session I Overview

- Sampling + Hypothesis testing can be used to infer parameters of a Bernoulli distribution
- Application: Verification of properties $P \geq \theta(\psi)$ where ψ is such that
 - for every execution σ, there is a finite prefix u such that $\sigma \models \psi$ iff $u \models \psi$, and
 - for any finite prefix u, $u \models \psi$ can be easy checked

Session II Overview

- Extend ideas of Session I to develop algorithms to verify properties in a full logic like PCTL. Main challenges include verifying properties $P \geq \theta(\psi)$, where
 - Determining the satisfaction of ψ on an execution requires further statistical tests
 - Satisfaction of ψ on an execution not determined by a finite prefix, e.g., pUq
- Use ideas of statistical model checking to verify “black-box” or “model-less” systems

Session II Outline

- Overview of Measure Spaces, Markov Chains, and PCTL
- Model checking PCTL
- Model checking black-box systems

Part I

Preliminaries

2 Measure Spaces

\(\sigma\)-Field

Definition 1. A \(\sigma\)-field over a set X is a collection, Σ, of subsets X such that

- $X \in \Sigma$
- If $A \in \Sigma$ then $X \setminus A \in \Sigma$, and
- If $\{A_i\}_{i \in I}$ is a countable collection of sets from Σ then $\bigcup_{i \in I} A_i \in \Sigma$

Example 2. Given a set X, the collections $\Sigma_1 = \{\emptyset, X\}$ and $\Sigma_2 = 2^X$ are examples of \(\sigma\)-fields.
Smallest σ-Field

- Intersection of arbitrary σ-fields is again a σ-field
- Thus, given any collection C of subsets of X, there is a unique smallest σ-field that contains C
- This is said to be the σ-field generated by C

Probability Measures

Definition 3. A *probability measure*, μ, over (X, Σ) is $\mu : \Sigma \rightarrow \mathbb{R}_{\geq 0}$ such that

- $\mu(\emptyset) = 0$
- For a countable collection of pairwise disjoint sets $\{A_i\}_{i \in I}$, $\mu(\bigcup_{i \in I} A_i) = \sum_{i \in I} \mu(A_i)$
- $\mu(X) = 1$

3 Markov Chains

Markov Chain

Definition 4. A Markov Chain over a set of propositions AP is a $\mathcal{M} = (Q, q_s, \delta, L)$, where

- Q is a set of (not necessarily finite) states,
- $q_s \in Q$ is the initial state,
- $L : Q \rightarrow 2^{AP}$ is a labelling function, and
- $\delta : Q \times Q \rightarrow [0, 1]$ is a transition function with the property that for every q, $\sum_{q' \in Q} \delta(q, q') = 1$

Measurable Sets

- A run ρ is an element of Q^ω. ρ starts from q if the first state in ρ is q; the collection of all such runs is denoted by path(q).
- For $u \in Q^*$, define $C_u = \{ u \cdot \rho \mid \rho \in Q^\omega \}$
- The *measurable sets of runs* are those belonging to the smallest σ-field generated by $\{C_u \mid u \in Q^*\}$

Probability Measure Defined by Markov Chains

Definition 5. The probability measure on runs defined by $\mathcal{M} = (Q, q_s, \delta, L)$ is the unique measure, μ, satisfying the following. For $u = q_0, q_1, \ldots, q_n$

$$\mu(C_u) = \prod_{i=0}^{n-1} \delta(q_i, q_{i+1})$$

Sampling executions of a Markov Chain generates runs according to this measure.
4 PCTL

PCTL Syntax

Definition 6. The formulas of PCTL over a set of atomic propositions AP are given by the following grammar

$$
\varphi ::= true \mid a \mid \neg \varphi \mid \varphi \land \varphi \mid P\Delta\preceq \theta(\psi)
$$

where $a \in AP$, $\Delta\in \{<,\leq,>,\geq\}$, $\theta \in \mathbb{R}$, and ψ is a path formula given by the following grammar

$$
\psi ::= X\varphi \mid \varphi U \varphi
$$

PCTL Semantics State Formulas

Definition 7. Satisfaction of a state formula φ at a state q is inductively defined as follows

- $q \models true$
- $q \models a$ iff $a \in L(q)$
- $q \models \neg \varphi$ iff q does not satisfy φ
- $q \models \varphi_1 \land \varphi_2$ iff $q \models \varphi_1$ and $q \models \varphi_2$
- $q \models P\Delta\preceq(\psi)$ iff $\mu(\{\pi \in \text{paths}(q) \mid \pi \models \psi\}) \land \theta$

PCTL Semantics Path Formulas

Definition 8. Satisfaction of a path formula ψ on a path $\pi = q_0q_1 \cdots$ is inductively defined as follows

- $\pi \models X\varphi$ iff $q_1 \models \varphi$
- $\pi \models \varphi_1 U \varphi_2$ iff there is an i such that $q_i \models \varphi_2$ and for all $j < i$, $q_j \models \varphi_1$

We say $M \models \varphi$ iff $q_s \models \varphi$

PCTL Syntax Abbreviations

We will use the following abbreviations

- $\varphi_1 \lor \varphi_2 = \neg(\neg\varphi_1 \land \neg\varphi_2)$
- $\varphi_1 U \leq n \varphi_2$ says that "φ_2 holds within n steps and φ_1 holds until then"

1For any state q and path formula ψ, $\{\pi \in \text{paths}(q) \mid \pi \models \psi\}$ is measurable.
Part II
Model Checking PCTL

5 Basic Operators

5.1 Overview

Schematic Picture

The system model could be any probabilistic model with a well understood probability space over executions that can be sampled, and a logic over that probability space.

Properties of the Algorithm

Let $A_{M}^{\delta}(q, \varphi, \alpha, \beta)$ be the result of the algorithm when checking if φ holds in state q in model M, with error parameters α and β, and indifference region δ. If M is such that

C For every subformula of φ of the form $P \geq p(\psi)$ and every state q', the measure of paths satisfying ψ is not in $[\frac{1-\delta}{1-\alpha}, \frac{1+\delta}{1-\beta}]$

then

\[
\begin{align*}
\text{Prob}[A_{M}^{\delta}(q, \varphi, \alpha, \beta) = \text{true} \mid q \not\models \varphi] & \leq \alpha \\
\text{Prob}[A_{M}^{\delta}(q, \varphi, \alpha, \beta) = \text{false} \mid q \models \varphi] & \leq \beta
\end{align*}
\]

Algorithm Structure

$A_{M}(q, \varphi, \alpha, \beta)$ {
switch (φ) {
 case true: return true
 case $a \in AP$: return ($a \in L(q)$)
 case $\neg \varphi'$: return verifyNot($q, \varphi, \alpha, \beta$)
 case $\varphi_1 \land \varphi_2$: return verifyAnd($q, \varphi, \alpha, \beta$)
 case $P \geq p(\psi)$: return verifyProb($q, \varphi, \alpha, \beta$)
}
}

We cannot distinguish between strict and non-strict inequalities in $P_{\geq p}(\psi)$. Also, $P_{< p}(\psi)$ is logically equivalent to $\neg P_{\geq p}(\neg \psi)$.

5.2 Algorithm for Boolean Operators

Negation

\[\text{verifyNot}(q, \neg \varphi', \alpha, \beta) \{ \]
\[\quad \text{return } \neg A_{M}^{\delta}(q, \varphi', \beta, \alpha) \}

Observe that (inductively)

\[\beta > \text{Prob}[A_{M}^{\delta}(q, \varphi', \beta, \alpha) = \text{true} | q \models \varphi'] \]
\[= \text{Prob}[A_{M}^{\delta}(q, \neg \varphi', \alpha, \beta) = \text{false} | q \models \neg \varphi'] \]
\[\alpha > \text{Prob}[A_{M}^{\delta}(q, \varphi', \beta, \alpha) = \text{false} | q \models \varphi'] \]
\[= \text{Prob}[A_{M}^{\delta}(q, \neg \varphi', \alpha, \beta) = \text{true} | q \models \neg \varphi'] \]

Conjunction

\[\text{verifyAnd}(q, \varphi_1 \land \varphi_2, \alpha, \beta) \{ \]
\[\quad \text{return } A_{M}^{\delta}(q, \varphi_1, \alpha, \beta/2) \land A_{M}^{\delta}(q, \varphi_2, \alpha, \beta/2) \}

Observe that (inductively)

\[\text{Prob}[A_{M}^{\delta}(q, \varphi_1 \land \varphi_2, \alpha, \beta) = \text{false} | q \models \varphi_1 \land \varphi_2] \]
\[= \text{Prob}[A_{M}^{\delta}(q, \varphi_1, \alpha, \beta/2) = \text{false} \lor A_{M}^{\delta}(q, \varphi_2, \alpha, \beta/2) = \text{false} | q \models \varphi_1 \land \varphi_2] \]
\[\leq \text{Prob}[A_{M}^{\delta}(q, \varphi_1, \alpha, \beta/2) = \text{false} | q \models \varphi_1 \land \varphi_2] + \]
\[\quad \text{Prob}[A_{M}^{\delta}(q, \varphi_2, \alpha, \beta/2) = \text{false} | q \models \varphi_1 \land \varphi_2] \]
\[= \text{Prob}[A_{M}^{\delta}(q, \varphi_1, \alpha, \beta/2) = \text{false} | q \models \varphi_1] + \]
\[\quad \text{Prob}[A_{M}^{\delta}(q, \varphi_2, \alpha, \beta/2) = \text{false} | q \models \varphi_2] \]
\[= \beta/2 + \beta/2 = \beta \]

Conjunction (contd)

Observe that (inductively)

\[\text{Prob}[A_{M}^{\delta}(q, \varphi_1 \land \varphi_2, \alpha, \beta) = \text{true} | q \notmodels \varphi_1 \land \varphi_2] \]
\[\leq \max(\text{Prob}[A_{M}^{\delta}(q, \varphi_1 \land \varphi_2, \alpha, \beta) = \text{true} | q \notmodels \varphi_1], \]
\[\quad \text{Prob}[A_{M}^{\delta}(q, \varphi_1 \land \varphi_2, \alpha, \beta) = \text{true} | q \notmodels \varphi_2]) \]
\[\leq \max(\text{Prob}[A_{M}^{\delta}(q, \varphi_1, \alpha, \beta) = \text{true} | q \notmodels \varphi_1], \]
\[\quad \text{Prob}[A_{M}^{\delta}(q, \varphi_2, \alpha, \beta) = \text{true} | q \notmodels \varphi_2]) \]
\[= \alpha \]
6 Probabilistic Operator

6.1 Simple Formulas

Simple Formulas

Definition 9. A simple formula is of the form $P_{\geq p}(\psi)$, where

- ψ only uses the path operators X and $U \leq n$, and
- ψ does not have any probabilistic operators

Checking Simple Formulas

To check if q satisfies a simple formula $P_{\geq p}(\psi)$, use either the single sampling plan or sequential hypothesis testing to statistically determine if the measure of paths satisfying ψ is $\geq p$ with indifference region 2δ. Draw samples as follows

Simulate the system from q until you get a finite path that either provably satisfies ψ or provably violates ψ

6.2 Bounded Path Formulas

Bounded Path Formulas

Definition 10. A bounded path formula is of the form $P_{\geq p}(\psi)$, where

- ψ only uses path operators X and $U \leq n$
- ψ may have nested probabilistic operators.

Checking Bounded Path Formulas

Challenge

Consider a formula $P_{\geq p}(XP_{\geq p'}(Xa))$, and drawing a sample run $\rho = q, q_1, \ldots$

- We cannot determine if $q_1 \models P_{\geq p'}(Xa)$, and so we don’t know if $\rho \models XP_{\geq p'}(Xa)$
- We can statistically determine if $q_1 \models P_{\geq p'}(Xa)$. How do we account for the error in the estimation?

Proportion of Fair Coins

Problem

Given a bag of coins, are most (75%) of the coins fair? If the coins can be physically examined to fair or not, then we have the following situation We can test the random variable X statistically to determine if $\text{Prob}[X = \text{fair}] \geq 0.75$.

Proportion of Fair Coins

If we cannot physically examine the coins to determine if they will be fair, we still want to test random variable X below. But we observe the following random experiment Y
Relating X and Y

Let X be Bernoulli with parameter p_x and Y be Bernoulli with parameter p_y. Suppose the test has errors (α, β), we have

\[
\begin{align*}
\Pr[Y = \text{fair} \mid X \neq \text{fair}] &\leq \alpha \\
\Pr[Y \neq \text{fair} \mid X = \text{fair}] &\leq \beta
\end{align*}
\]

Relating X and Y

Let X be Bernoulli with parameter p_x, Y be Bernoulli with parameter p_y, and test have error (α, β). Then,

\[
\begin{align*}
p_y &= \Pr[Y = \text{fair}] \\
&= \Pr[Y = \text{fair} \mid X \neq \text{fair}] \Pr[X \neq \text{fair}] \\
&\quad \quad + \Pr[Y = \text{fair} \mid X = \text{fair}] \Pr[X = \text{fair}]
\end{align*}
\]

as $\Pr[Y = \text{fair} \mid X = \text{fair}] \geq 1 - \beta$. This means if $p_x < \frac{p_\beta - \alpha}{1 - \alpha}$ then $p_y < p - \delta$ and if $p_x > \frac{p + \delta}{1 - \beta}$ then $p_y > p + \delta$. Thus, we sample from Y and test the sample against p with indifference region 2δ.

Algorithm for Bounded Path Formulas

verifyProb($q, P_{\geq p}(\psi), \alpha, \beta$) {
 Do as in simple hypothesis testing of Bernoulli variable except when drawing a sample do the following ...
 Get sample run π from q
 switch (ψ) {
 case $X\psi'$: return $A_{M}(\pi[1], \psi', \beta, \alpha)$
 case $\varphi_1 U^{\leq n} \varphi_2$: return verifyBUntil($q, \varphi, \alpha, \beta$)
 }
}

Bounded Until

To check if π satisfies $\varphi_1 U^{\leq n} \varphi_2$, we check if there is an $i \leq n$, such that $\pi[i] \models \varphi_2$, and $\pi[j] \models \varphi_1$, for $j < i$. We do these tests statistically, giving us the following test.

verifyBUntil($q, \varphi_1 U^{\leq n} \varphi_2, \alpha, \beta$) {
 for $i = 0$ to n do
 if $A_{M}(\pi[i], \varphi_2, \beta/n, \alpha)$ then return true
 else if not $A_{M}(\pi[i], \varphi_1, \beta/n, \alpha)$ then return false
}
Justification for parameters is same as for conjunction.

6.3 Unbounded Until

Unbounded Until

When drawing samples for bounded path formulas we know when to stop simulating

- when checking $X\varphi'$, we simulate the system for one step
- when checking $\varphi_1 U^n \varphi_2$, we simulate for at most n steps

But for $\psi = \varphi_1 U \varphi_2$ we don’t know when to stop simulation; there maybe no finite prefix that determines the unsatisfiability ψ on a run.

Stopping Probability

We will modify the simulation as follows: at every step, either stop simulation with probability p_s, or continue the simulation with probability $1 - p_s$. Formally, given $\mathcal{M} = (Q, q_s, \delta, L)$, take $\mathcal{M}' = (Q \cup \{q_\perp\}, q_s, \delta', L')$ where

- $L'(q) = L(q)$ for $q \in Q$, and $L'(q_\perp)$ is such that $q_\perp \not\models \varphi_2$
- For every $q, q' \in Q$, $\delta'(q, q_\perp) = p_s$ and $\delta'(q, q') = (1 - p_s)\delta(q, q')$, and $\delta'(q_\perp, q_\perp) = 1$

Relating the two Markov Chains

Proposition 11. Let the measure of paths in \mathcal{M} from $q \in Q$ satisfying $\varphi_1 U \varphi_2$ be denoted by $p^\mathcal{M}$ and the measure in \mathcal{M}' be denoted by $p^\mathcal{M}'$. If N is the number of states in \mathcal{M} then

$$p^\mathcal{M}(1 - p_s)^N \leq p^\mathcal{M}' \leq p^\mathcal{M}$$

Proof.

- The measure of paths from q satisfying $\varphi_1 U \varphi_2$ is obtained by solving a system of equations, through (say) Gaussian elimination
- Suppose the measure of paths from q is the ith variable solved
- By induction on i, that $p^\mathcal{M}(1 - p_s)^i \leq p^\mathcal{M}' \leq p^\mathcal{M}$

Checking Unbounded Until Formulas

- Sample finite paths from \mathcal{M}'
- Using the relationship between the Markov Chains \mathcal{M} and \mathcal{M}' setup the hypothesis testing with appropriate indifference regions like the case of nested probabilistic operators
Discussion of Unbounded Until Checking

- The algorithm presented depends on the number of states N, and the stopping probability need to make the conditions workout can be small.
- [SVA 05] Another algorithm with possibly better sample performance is as follows:
 - Use a special algorithm to check if a state q satisfies $P=0(\varphi_1 U \varphi_2)$, by drawing samples from \mathcal{M}'.
 - Draw samples from \mathcal{M} by stopping either when state satisfying φ_2 is encountered or when a state satisfying $P=0(\varphi_1 U \varphi_2)$ is encountered.

An Alternate Statistical Approach

- The correctness guarantees of the statistical model checker only apply when the measure of paths satisfying the path subformulas are bounded away from the threshold to which they are compared.
- The basic test for a probabilistic operator tests the hypothesis $H_0 : p' \geq p + \delta$ against the hypothesis $H_1 : p' \leq p - \delta$.
- An alternate approach [SVA04,You06] does two comparisons: (a) the hypothesis $H_0^1 : p' \geq p + \delta$ against $H_1^1 : p' \leq p$, and (b) the hypothesis $H_0^2 : p' \leq p - \delta$ against $H_1^2 : p' \geq p$.
 - If H_0^1 is accepted over H_1^1 then we say $P_{\geq p}(\psi)$ holds.
 - If H_0^2 is accepted over H_1^2 then we say $P_{\geq p}(\psi)$ does not hold.
 - If neither of the above cases happen, the algorithm says “unknown.”
- The basic probability test can be extended to all of PCTL.

Beyond PCTL and Markov Chains

- The statistical model checking approach can be applied to any situation where the model’s probability space, simulation algorithm, and specification logic are intrinsically tied, not just Markov Chains and PCTL.
- Similar ideas have been used to analyze “real-time” models like CTMC, SMC against CSL specifications.
- The approach has also been used to check properties based on FFTs (Session I).

Part III
Model Checking Black-Box Systems

7 Introduction

7.1 Motivation

Black-Box Systems
Generating samples from any state of the system as desired maybe unreasonable in certain situations.

- When monitoring/observing a remote system over the network
- When analyzing third-party code

7.2 Problem Setup

Black-Box Systems: Schematic Picture

Limitations Imposed by Problem Setting

- Since the sample runs are drawn independent of the verification process, the algorithm cannot guarantee the correctness of its result to be within given error bounds.
- Instead, the algorithm will compute a qualitative measure of the confidence in its answer (p-value)
- The sample may not contain “statistical witness” for the satisfaction or violation of a property; the algorithm answers “don’t know” in such cases

Comments about the Algorithm

- Runs will be assumed to be generated from a “Markovian” process; so suffix of run starting from a state \(q \) are faithful samples drawn from \(\text{path}(q) \)
- Useful results can only be obtained if the sample contains sufficiently many runs from each “relevant state”; thus, the model have finitely many “states” like a DTMC, CTMC
- Since the number of sample runs is finite, and each run is finite, unbounded until operators are essentially bounded until operators
8 The Algorithm

8.1 Probabilistic Operators

Algorithm Structure

\[
\text{verifyAtState}(q, \varphi) \quad \{
\text{switch} \ (\varphi) \quad \{
\text{case} \ \text{true}: \ \text{return} \ (\text{true}, 0) \\
\text{case} \ a \in \mathcal{AP}: \ \text{return} \ ((a \in L(q)), 0) \\
\text{case} \ \neg \varphi': \ \text{return} \ \text{verifyNot}(q, \varphi) \\
\text{case} \ \varphi_1 \land \varphi_2: \ \text{return} \ \text{verifyAnd}(q, \varphi) \\
\text{case} \ P \geq p(\psi): \ \text{return} \ \text{verifyProb}(q, \varphi) \\
\}\}
\]

Algorithm returns a result (true, false, or unknown) and a \(p \)-value

Non-nested Probabilistic Operator: Observations

Suppose we want to check if \(q \) satisfies \(P \geq p(\psi) \). The \(n \) sample runs from \(q \) fall into 3 categories

- Those that satisfy \(\psi \); let there be \(n_\top \) such runs
- Those that satisfy \(\neg \psi \); let there be \(n_\bot \) such runs
- Those that satisfy neither \(\psi \) nor \(\neg \psi \). This happens when short. Let there be \(n_? \) such runs

Thus, the sum of all positive observations is at least \(n_\top \), and at most \(n - n_\bot \).

Non-nested Probabilistic Operators: Algorithm

Let \(X \) be the random variable denoting drawing a path from \(q \) that satisfies \(\psi \), and let \(p' \) be its parameter

- If \(n_\top > np \) then we say \(q \) satisfies \(P \geq p(\psi) \) and the confidence in the answer is bounded by \(\text{Prob}[\sum X \geq n_\top | p' = p] \)
- If \(n - n_\bot < np \) then we say \(q \) does not satisfy \(P \geq p(\psi) \) and the confidence is bounded by \(\text{Prob}[\sum X \leq n - n_\bot | p' = p] \)
- Otherwise, we say “don’t know”

Nested Probabilistic Operators

- Once again the situation can be modelled as one where instead of observing a random variable \(X \) with parameter \(p_x \), the sample provides evidence for another random variable \(Y \) with parameter \(p_y \)
- If \(\alpha \) is the \(p \)-value associated with \(Y \), we can bound \(p_y \) as \(p_x - \alpha p_x \leq p_y \leq p_x + (1 - p_x)\alpha \)
- Using these bounds, we can bound the confidence as \(\text{Prob}[\sum Y > n_\top | p_y = p - \alpha p] \) or \(\text{Prob}[\sum Y < n - n_\bot | p_y = p + (1 - p)\alpha] \)
Nested Probabilistic Operators: Algorithm

\[
\text{verifyProb}(q, P_{≥p}(\psi)) \quad \{
\]
\[
\text{max} = 0; \text{min} = 0; \; \alpha = 0;
\]
\[
\text{for each sample path } \pi \text{ starting at } q \{
\]
\[
(y, \alpha') = \text{verifyPath}(\pi, \psi);
\]
\[
\text{if } y = \text{don’t know then}
\]
\[
\text{max} = \text{max} + 1
\]
\[
\text{else min = min} + y; \; \text{max} = \text{max} + y;
\]
\[
\alpha = \max(\alpha, \alpha')
\]
\[
\}
\]
\[
\text{if (min} > p + (1 - \alpha)p \text{ then return (true, Prob[} \sum Y \geq \text{ min } | p_y = p + (1 - \alpha)p)\])}
\[
\text{else if (max} < p - \alpha p \text{ then return (true, Prob[} \sum Y \leq \text{ max } | p_y = p - \alpha p)\])}
\[
\text{else return (don’t know, 0)}
\]
\[
\}
\]

8.2 Boolean Operators

Negation

\[
\text{verifyNot}(q, \neg \psi) \quad \{
\]
\[
(y, \alpha) = \text{verifyState}(q, \psi);
\]
\[
\text{return (} \neg y, \alpha \text{)}
\]
\[
\}
\]

Conjunction

- If \(q \) satisfies \(\varphi_1 \) with \(p \)-value \(\alpha_1 \) and satisfies \(\varphi_2 \) with \(p \)-value \(\alpha_2 \) then \(q \) satisfies \(\varphi_1 \land \varphi_2 \) with \(p \)-value \(\max(\alpha_1, \alpha_2) \)
- If \(q \) does not satisfy \(\varphi_1 \) with confidence \(\alpha_2 \) (or \(\varphi_2 \) with \(\alpha_2 \)) then \(q \) does not satisfy \(\varphi_1 \land \varphi_2 \) with confidence \(\alpha_1 \) (\(\alpha_2 \))
- If \(q \) does not satisfy \(\varphi_1 \) and \(\varphi_2 \) with confidence \(\alpha_1 \) and \(\alpha_2 \), respectively, then \(q \) does not satisfy \(\varphi_1 \land \varphi_2 \) with confidence \(\min(\alpha_1, \alpha_2) \)

Extensions

- Ideas used to check PCTL properties can easily be extended to check properties in CSL

Conclusions

- Statistical hypothesis testing can be used to verify systems in a model independent way, against a variety of properties
- The techniques have been used in a few case studies (including those discussed in Session I)
- There have also been some examples analyzed to get a better sense of the samples needed, and how the approach compares to more traditional numerical based approach