Simulation + Hypothesis Testing for Solving the Probabilistic Model Checking Problem

Axel Legay and Mahesh Viswanathan

September 11, 2009

Axel Legay and Mahesh Viswanathan Simulation + Hypothesis Testing for Solving the I 1/64

1

Contents

1	Outline	1
2	Introduction	1
3	The Algebraic Approach	3
4	Statistical Model Checking	5
5	Experiments	12
6	Bayesian Model Checking	23
7	What's next?	23

2 Introduction

Objective

Our Objectives

We will have four objectives :

- 1. Getting more knowledge about how to verify stochastic systems;
- 2. Studying how statistical techniques can be applied in this area;
- 3. New applications (models, properties);
- 4. Going further than algebraic approaches (PRISM, LIQOR, ...).

Stochastic Systems

Stochastic Systems (1)

Definition 1. A stochastic system is a process that evolves over time, and whose evolution can be predicted in terms of probability (pure) and nondeterministic choices (nonpure).

Where can they be found?

- Embedded systems;
- Economy;
- Networking;
- Systems Biology;
- ...

Stochastic Systems (2) : Models

Those we consider

- Any model of pure stochastic systems;
- Example : Markov Chains.

Those we won't consider

- Any model which mixes nondeterministic and probabilistic choices;
- Example : Markov Decision Processes (MDPs).

Verifying Stochastic Systems

Verification Process

Question

Does $\mathcal{S} \models P_{>\theta}(\phi)$?

where :

- \mathcal{S} is a Stochastic system;
- Executions of S are sequences of states (random variables);
- ϕ is some execution-based property (specification language);
- P(X) means : "the probability for X to happen";
- θ is a probability threshold.

3 The Algebraic Approach

Outline

Contents

Description of the approach

Main idea

Overview

- Assume the existence of a probability space;
- Compute the probability p for S to satisfy ϕ ;
- Compare p with θ .

Difficulty

Algorithms to compute p.

Advantages and Disadvantages

Advantages

- High accuracy in result;
- Exists for nonpure models such as MDPs;
- \bullet Well-established tools : PRISM, LIQUOR, PMAUD, \ldots
- ...

Disadvantages

There are at least 5 disadvantages

- 1. Memory intensive;
- 2. Limited to certain classes of systems and properties (finite-state, ..);
- 3. No unique solution;

4. Complex algorithms :

One Difficulty: How to find efficient data structures;

5. Difficult to parallelize.

4 Statistical Model Checking

Outline

Contents

Description of the approach

Learning from a Simple Problem

A (VERY) simple problem

- Consider a machine that flips a (possibly biaised) coin;
- Is the probability p of having a head greater or equal to some θ ?

A solution

- Do several flips and deduce the answer from them;
- If the number of flips is infinite, our answer will be correct up to some type error.

This is the statistical model checking approach!

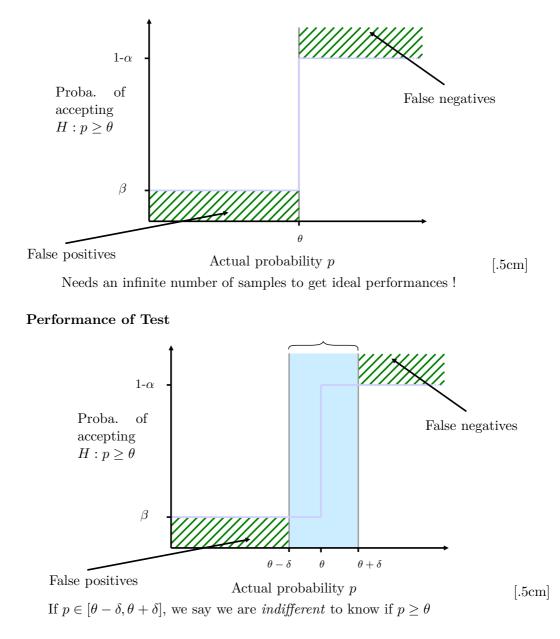
Hypothesis Testing

Test $P(\text{having a head}) \ge \theta$ against $P(\text{having a head}) < \theta$

With (Type error):

- 1. α : the probability to accept H_1 while H_0 is true;
- 2. β : the probability to accept H_0 while H_1 is true.

Performance of Test



Summary

We want to test :

 $H_0: p \ge p_0$ against $H_1: p < p_1$, where $p_0 = \theta + \delta$ and $p_1 = \theta - \delta$.

With:

- Type erros α and β , and
- Indifference region 2δ .

Bernouili Variables for experiments Bernouili variable X_i of parameter p

- Takes two values : $X_i = 0$ or $X_i = 1$;
- $P[X_i = 1] = p$ and $P[X_i = 0] = 1 p;$
- Realization is denoted x_i .

Experiments

- We assume independent trials;
- We can generate as much trials as we want;
- p is the probability to get a head ;
- Associate a bernouili variable X_i to each trial;
- $X_i = 1$ iff the trial is a tail.

Two Algorithms

Algorithm 1 : Single Sampling plan

- Pre-compute a number *n* of experiments;
- *n* depends on δ, α , and β .

Algorithm 2

Basically a on-the-fly version of the Single Sampling Plan (in fact, this is much more :-)!)

Single Sampling plan

Single Sampling plan : Principles

- Choose n and c with $c \leq n$;
- *n* observations x_1, \ldots, x_n for *n* samplings X_1, \ldots, X_n ;
- $Y = \sum_{i=1}^{n} x_i;$
- Accept H_0 if $Y \ge c$ and H_1 otherwise;

Difficulty : Find n and c such that α and β are satisfied

Single Sampling plan : α and β

Definition 2. $P[Y \le c] = F(c; n; p) = \sum_{i=0}^{i=c} C_i^n p^i (1-p)^{n-i}$. **Definition 3.** $F(c; n; \theta)$: probability to accept H_1 . **Definition 4.** • $F(c; n; \theta + \delta) \le \alpha$;

• 1 - $F(c, n; \theta - \delta) \leq \beta$.

Single Sampling plan : Disadvantages

- Difficult to find c and n : No unique solution;
- Difficult to minimize *n*;

Approximation algorithms exist (Haakan Youness).

Better for black-box systems (next part of the tutorial)...

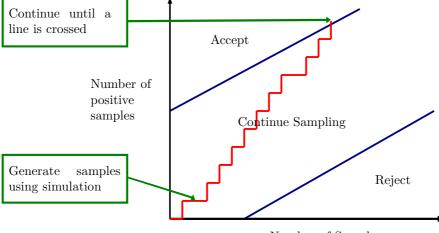
\mathbf{O} \mathbf{i}	/ 7 7	r ,• '	۰.
Optimali	\mathbf{v} (H	asting	۱.
Opuman	∪,y (⊥⊥	asung	,

Thresholds		Values	
$\theta - \delta = 0$	$\theta+\delta=1$	n = 1	c = 0
$\theta - \delta = 0$	$\theta+\delta<1$	$n = \frac{\log \alpha}{\log 1 - \theta - \delta}$	c = 0
$\theta - \delta > 0$	$\theta+\delta=1$	$n = \frac{\log \beta}{\log \theta - \delta}$	c = n - 1

Sequential Hypothesis Testing

Sequential Hypothesis Testing

- Check hypothesis after each sample and stop as soon as possible
- We can find an acceptance line and a rejection line given $\alpha, \beta, \theta, \delta$.[.6cm]



Number of Samples

Wald's Testing

Compute

$$W = \prod_{i=1}^{m} \frac{Pr(X_i = x_i \mid p = \theta - \delta)}{Pr(X_i = x_i \mid p = \theta + \delta)} = \frac{(\theta - \delta)^{d_m} (1 - \theta + \delta)^{m - d_m}}{(\theta + \delta)^{d_m} (1 - \theta - \delta)^{m - d_m}}, \quad (1)$$

where $d_m = \sum_{i=1}^m x_i$. Stop when :

- $W \ge (1-\beta)/\alpha$: H_1 is accepted;
- $W \leq \beta/(1-\alpha)$: H_0 is accepted.

More Mathematics

- In theory : the test does not guarantee α and β !
- New parameters α' and β' such that

$$-\alpha' \leq \frac{\alpha}{1-\beta}$$
 and $\beta' \leq \frac{\beta}{1-\alpha}$

 $-\alpha'+\beta'\leq\alpha+\beta;$

• In practice : one observes that α and β are almost often guarantee, and it may even be better!

Example 5. Let $p_0 = 0.5$, $p_1 = 0.3$, $\alpha = 0.2$, $\beta = 0.1$:

- In theory : $\alpha' \leq \frac{0.2}{0.9} = 0.222...$ and $\beta' \leq \frac{0.1}{0.8} = 0.125;$
- Computer simulation : $\alpha' = 0.175$ and $\beta' = 0.082$.

Performances (1)

- Single sampling plan can be better than SPRT !
- SPRT is, in practice, more efficient;
- Expected sample size E_p (Wald's formula) :
 - SPRT minimizes E_p at $\theta + \delta$ and $\theta \delta$;
 - E_p increases from 0 to $\theta \delta$;
 - E_p decreases from $\theta + \delta$ to 1;
 - Between $\theta \delta$ and $\theta + \delta$: increase and then decrease.

Performances (2) : SPRT

Indifference region	Number of	-
2δ	executions	
0.1	55	
0.05	106	Number of trajectories against 28
0.02	228	Number of trajectories against 2δ
0.01	627	
0.005	1056	
		-

 $(\alpha = \beta = 0.02)$

• m increases linearly if δ decreases.

Test strength	Number of	-
$\alpha(=\beta)$	executions	
$1e^{-2}$	335	
$1e^{-4}$	502	Number of trajectories against $\alpha (\beta - \alpha)$
$1e^{-6}$	857	Number of trajectories against α ($\beta = \alpha$
$1e^{-8}$	1301	
$1e^{-10}$	1467	
		-

Performances (3) : SPRT

and $2\delta = 0.02$)

• *m* increases logarithmically if α and/or β decrease.

From Flipping a coin to Model Checking

Fact

Flipping a coin is nothing more than testing whether a finite execution satisfies a property.

Results

Consequence : Wald's testing directly applies to model check properties of white-box stochastic systems.

Properties

- *Natural* : those that can be checked on finite execution;
- Going further : Some properties on infinite executions:

Next part of the tutorial.

Why are nonpure systems forbidden?

- We sample a unique distribution;
- Sampling several distributions would require to distinguish between them;
- This cannot be done on the sole basis of running the system.

Advantages

Advantages

- Easy to parallelize (independent sampling, unbiased distributed sampling);
- Independent of system's size;
- Independent of system's probability distribution;
- Easy to trade accuracy for speed;
- Uniform approach;
- Easy to implement :
 - In most cases, one only need to implement a "trace checker" that tests whether an execution satisfies a given property;
 - No need for complex data structures.

A Note on Parallelization

- Observations are generated by different machines;
- Observations must be independent; :
 - Using different seeds is not sufficient : it only determines initial numbers, not the way the sequence is generated;
 - Solution :

encode process ID directly is the generator.

• Slave - master : experiments are collected in ring-order.

5 Experiments

2 types of experiments

- $\Delta \Sigma$ Modulator (conversion : analogue to digital);
- Systems biology (briefly).

Modulator

Model Checking mixed-signal circuits

- Mature for digital designs but still new for analog and mixed design
- Difficult due to continuous and hybrid state variables

Probabilistic Model Checking

- Stochastic systems and/or stochastic uncertainties
- Exact solution is a difficult problem in general

Statistical Approach

- Use of numerical simulation
- Approximate solution with bounds on errors

Systems and Logics with Signals

Outline

Contents

Logics: LTL formulas

Let ${\mathcal B}$ be a set of predicates. The following defines an LTL formula:

 $\phi ::= \mathbf{T} \left| \mathbf{F} \right| b \in \mathcal{B} \left| \neg \phi \right| \phi_1 \lor \phi_2 \left| \bigcirc \phi \right| \phi_1 \mathcal{U} \phi_{\in}.$

Let $\omega = s_1 s_2 \dots s_k$, $|\omega| = k$, $\omega^i = s_i s_{i+1} \dots s_k$, $\omega(i) = s_i$ and L be a mapping from S to $2^{\mathcal{B}}$. We have:

- $\omega \models \mathbf{T}, \omega \not\models \mathbf{F}$ and $\omega \models \neg \phi$ iff $\omega \not\models \phi$
- $\omega \models b$ with $b \in \mathcal{B}$ iff $b \in L(\omega(0))$
- $\omega \models \phi_1 \lor \phi_2$ iff $\omega \models \phi_1$ or $\omega \models \phi_2$
- $\omega \models \bigcirc \phi$ iff $|\omega| > 1$ and $\omega^1 \models \phi$
- $\omega \models \phi_1 \mathcal{U} \phi_{\in}$ iff there exists $0 \le i \le |\omega| 1$ such that $\omega^i \models \phi_2$, and for each $0 \le j < i, \, \omega^j \models \phi_1$

Additionally, we use the *eventually* operator \Diamond defined as $\Diamond \phi = \mathbf{F} \mathcal{U} \phi$. Note that we only consider *finite* executions.

Logics: Execution Predicates

Definition 6 (Execution Predicate). Let $\Sigma(S)$ be the set of all the executions of an SSDES S. An *execution predicate* p for S is a mapping $p : \sigma \in \Sigma(S) \mapsto p(\sigma) \in \{\mathbf{T}, \mathbf{F}\}$.

Example 7. Execution predicate p that decides whether the mean value of the analog signal associated with σ is ≥ 0 :

$$p(\sigma) = \mathbf{T}$$
 iff $\frac{1}{N} \sum_{k=0}^{N-1} \pi_a(\sigma(k)) \ge 0.$

More complex functionals such as the fourier transform can be used[.4cm]

Claim. Let S be an SSDES and ϕ be a Boolean combination of LTL formulas and execution predicates. One can always associate a probability with the set of executions of S that satisfy ϕ .

A Class of Mixed-Signal Circuits: $\Delta - \Sigma$ Modulators

Outline

Contents

$\Delta - \Sigma$ Modulators for Dummies

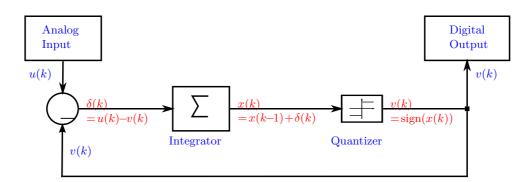
Analog to Digital converters (ADC)

- Converts analog signal into digital signals
- Used in many electrical devices interfacing with a physical environment[.5cm]

 $\Delta - \Sigma \ modulators$

- Widely used family of ADCs
- Efficient processing of the *quantization error*, i.e., the difference between the analog input and the digital output

A Simple Discrete-Time $\Delta - \Sigma$ Modulator Principle Control of quantization error using a feedback loop



- The *quantization error* is the difference between the input and the output
- The integrator stores the summation of $\delta \mathbf{s}$ in a state variable x
- The quantizer produces the output based on the sign of x

Higher Order $\Delta - \Sigma$ Modulators

- More complex designs use more than one integrator [.3cm]
- The order of a $\Delta \Sigma$ modulator is the number of integrators used[.3cm]
- Beginning from order three, a *stability* issue appears[.3cm]
- i.e. the integrators states can reach a *saturation* threshold compromising the analog to digital conversion

Experiments with a Third Order $\Delta - \Sigma$ Modulator Outline

Contents

Questions and Existing Results

First Question When does saturation occur?

Second Question

Does saturation always imply a bad conversion?

Existing Results

- Hybrid system model;
- Some answer to the first question for a limited horizon;
- Nothing for the second question (Fourier transform!).

A third order $\Delta - \Sigma$ modulator, Simulink model

- We get a stochastic system by randomly choosing the inputs u(k)
- State s_k is the tuple $(u(k), x_1(k), x_2(k), x_3(k), v(k))$
- The next state s_{k+1} is determined by the random choice of u(k+1) and computed by the Simulink engine
- For all k, u(k) is chosen uniformly in $[-u_{\max}, u_{\max}]$ [.3cm]
- \Rightarrow Statistical analysis for all input signals of amplitude bounded by $u_{\rm max}$

Saturation Analysis

Probability of saturation occurrence for different values of u_{\max} ?

- Let *Satur* be a boolean predicate
- For all state $s = (u, x_1, x_2, x_3, v)$, let $L(s) = \{Satur\}$ iff $|x_3| \ge 1$

We can then evaluate the formula $Pr_{\geq \theta}(\diamondsuit Satur).[.3cm]$ A tool :

- A routine checking $\sigma \models \diamondsuit Satur$
- The sequential ratio testing algorithm which decides whether $\mathcal{S} \models Pr_{>\theta}(\phi)$ given θ , α , β and δ
- A simple bisection procedure which tries to maximize the value of θ for which the answer is true

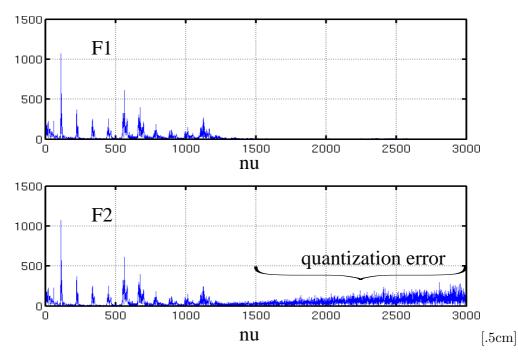
Experimental Results

$u_{\rm max}$	Hypothesis	Number
	Accepted	of executions
0.1	$p \leq 0$	416
0.15	$p \ge 0.0938$	4967
0.2	$p \ge 0.640625$	17815
0.25	$p \ge 0.984375$	416
0.3	$p \ge 1$	688

Table of results for $p = Pr(\sigma \models \diamondsuit Satur)$, with $\alpha = \beta = 1e^{-3}$ and $\delta = 1e^{-2}$

- Consistent with results formally obtained in [Dang Donze Maler 04] but on a much larger horizon (24000 as compared to 31)
- The expected number of simulations grows logarithmically w.r.t. the inverse of α and β and polynomially w.r.t. the inverse of δ

Frequency Domain



- Quantization pushes error towards high frequencies;
- Suggestion : Check for quality under small frequencies.

Execution Predicate in the Frequency Domain

- Let $F_u(\sigma)$ and $F_v(\sigma)$ be the Fourier Transforms (FTs) of the input signal associated with σ [.2cm]
- Let $d_f^{\nu_0}(\hat{\xi}_1, \hat{\xi}_2)$ be a measure of the distance between two FTs $\hat{\xi}_1$ and $\hat{\xi}_1$ for frequencies smaller than $\nu_0[.2\text{cm}]$
- Then we can derive an execution predicate p_f such that

$$p_f(\sigma) = \mathbf{T} \text{ iff } d_f^{\nu_0}(F_u(\sigma), F_v(\sigma)) \le \epsilon,$$

For $\nu_0 = 100 Hz$ and $\epsilon \leq .1$ the predicate discriminates between "correct" and "failed" conversions

$u_{\rm max}$	Hypothesis	Number
	Accepted	of Executions
0.8	$p \ge 1$	688
0.9	$p \ge 0.984375$	612
1.0	$p \ge 0.984375$	1248
1.1	$p \ge 0.875$	6388
1.2	$p \ge 0.578125$	15507

Frequency Domain Predicate, Experimental Results

Table of results for $p = Pr(p_f)$, with $\alpha = \beta = 1e^{-3}$ and $\delta = 1e^{-2}$

Experiments Interpretation

The previous results show that

- For $u_{\text{max}} \ge 0.3$ the system satisfies $\Diamond Satur$ with probability 1
- For $u_{\text{max}} \leq 0.8$ the system satisfies p_f with probability 1 [.5cm]

Thus we statistically established that for $0.3 \leq u_{\text{max}} \leq 0.8$, the formula $\Diamond Satur \wedge p_f$ is satisfied with probability 1, meaning that saturation can occur without a dramatic decrease in the conversion quality[.8cm]

This extends the results in [Gupta Krogh Rutenbar 04] and [Dang Donze Maler 04] where it was conservatively assumed that the absence of saturation was necessary for a proper behavior

Conclusion and Perspectives

Conclusion on $\Delta - \Sigma$ Modulator

Summary

- A framework for the statistical probabilistic Model Checking of mixed-signal circuits
- The simulation-based approach makes it easier to deal with functionals on executions such as the Fourier transform

• Application to a non-trivial case study for which we improved previous results Future work

- Extension to unbounded execution and dense time using appropriate monitoring techniques
- Logic mixing temporal properties and partial execution predicates
- More precise definitions and specifications for frequency domain properties based on the need of analog designers

System's Biology

Systems Biology

- In presence of a few species, reactions are defined in terms of stochastic processes;
- In such context, one wants to exercise the master equation that governs system's evolution.

Definition 8. The master equation : phenomenological set of firstorder differential equations describing the time evolution of the probability of a system to occupy each one of a discrete set of states.

Situation

- We want to Solve stochastic equations, but
- Many stochastic equations are numerically intractable!

BionetGen and Gillespie

• BionetGen Toolset:

Very simple language to model proteins and proteins-proteins interactions :

Uses rewriting rules like the k-calculus

- Gillespie algorithm simulates rule applications (Continuous-timed Markov Chains);
- Systems can be big : more than 6 hours for a simulation !

 \Rightarrow distributed implementation.

BionetGen Language (1)

The language allows to describe

- Molecules and functional;
- States of functional;
- Binding between functional and molecules;
- Chemical reactions;
-

Available at

http://bionetgen.org/index.php/Main_Page

BionetGen Language (2)

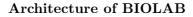
Example 9. Molecule

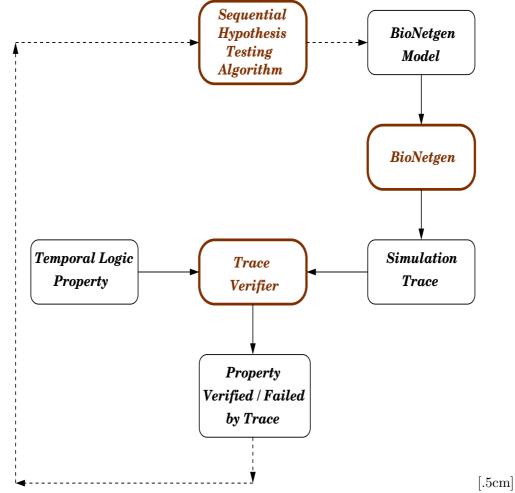
 $R(l,d,Y^{P})$

Example 10. Chemical reaction
L(r) + R(l,d) <-> L(r!1).R(l!1,d) kp1, km1

Biolab

- Combine BionetGen with SPRT;
- A logic for biologist;
- Formal validation of observations (T-Cell model, ...).





The T-Cell model

• Detect antigen and should react properly;

- Should not react to non pathological proteins;
- Property : the system can alternate between reactive an nonreactive states.

6 Bayesian Model Checking

Bayesian Testing

- 1. Prior probability (informative Vs. non informative) on H_0 and H_1 ;
- 2. Prior information is used to decrease the number of experiments;
- 3. Bayesian Testing is more driven towards compound hypothesis than statistical hypothesis testing!

Future Work : Bayesian risk and nested operators.

Non Informative Prior

θ	Bayes	s' Factor Test	SPR	$T \ (\delta = 0.01)$	SPR	$T \ (\delta = 0.001)$
	H_1	H_0	H_1	H_0	H_1	H_0
0.95	2		275		349	
0.9	8		610		608	
0.8	35^{*}		-	-	-	-
0.7	81*		-	-	-	-
0.6	591^{*}		-	-	-	-
0.5		272	-	-	-	-
0.4		156	-	-	-	-
0.3		16	-	-	-	-
0.2		5		909		929
0.1		9		446		468
0.05		2		201		189

7 What's next?

Next part of the tutorial :

- Model Checking PCTL* using hypothesis testing;
- Neested probability operators;
- Black-box systems.

1 Overview

Session I Overview

- Sampling + Hypothesis testing can be used to infer parameters of a Bernoulli distribution
- Application: Verification of properties $P_{\geq \theta}(\psi)$ where ψ is such that
 - for every execution σ , there is a finite prefix u such that $\sigma \models \psi$ iff $u \models \psi$, and
 - for any finite prefix $u, u \models \psi$ can be easy checked

Session II Overview

- Extend ideas of Session I to develop algorithms to verify properties in a full logic like PCTL. Main challenges include verifying properties $P_{\geq \theta}(\psi)$, where
 - Determining the satisfaction of ψ on an execution requires further statistical tests
 - Satisfaction of ψ on an execution not determined by a finite prefix, e.g., p U q
- Use ideas of statistical model checking to verify "black-box" or "model-less" systems

Session II Outline

- Overview of Measure Spaces, Markov Chains, and PCTL
- Model checking PCTL
- Model checking black-box systems

Part I Preliminaries

2 Measure Spaces

$\sigma\text{-Field}$

Definition 1. A σ -field over a set X is a collection, Σ , of subsets X such that

- $X \in \Sigma$
- If $A \in \Sigma$ then $X \setminus A \in \Sigma$, and
- If $\{A_i\}_{i \in I}$ is a countable collection of sets from Σ then $\bigcup_{i \in I} A_i \in \Sigma$

Example 2. Given a set X, the collections $\Sigma_1 = \{\emptyset, X\}$ and $\Sigma_2 = 2^X$ are examples of σ -fields.

Smallest σ -Field

- Intersection of arbitrary σ -fields is again a σ -field
- Thus, given any collection C of subsets of X, there is a unique smallest σ -field that contains C
- This is said to be the σ -field generated by C

Probability Measures

Definition 3. A probability measure, μ , over (X, Σ) is $\mu : \Sigma \to \mathbb{R}_{\geq 0}$ such that

- $\mu(\emptyset) = 0$
- For a countable collection of pairwise disjoint sets $\{A_i\}_{i \in I}$, $\mu(\bigcup_{i \in I} A_i) = \sum_{i \in I} \mu(A_i)$
- $\mu(X) = 1$

3 Markov Chains

Markov Chain

Definition 4. A Markov Chain over a set of propositions AP is a $\mathcal{M} = (Q, q_s, \delta, L)$, where

- Q is a set of (not necessarily finite) states,
- $q_s \in Q$ is the initial state,
- $L: Q \to 2^{AP}$ is a labelling function, and
- $\delta: Q \times Q \to [0,1]$ is a transition function with the property that for every $q, \sum_{q' \in Q} \delta(q,q') = 1$

Measurable Sets

- A run ρ is an element of Q^{ω} . ρ starts from q if the first state in ρ is q; the collection of all such runs is denoted by path(q).
- For $u \in Q^*$, define $C_u = \{u \cdot \rho \mid \rho \in Q^\omega\}$
- The measurable sets of runs are those belonging to the smallest σ -field generated by $\{C_u \mid u \in Q^*\}$

Probability Measure Defined by Markov Chains

Definition 5. The probability measure on runs defined by $\mathcal{M} = (Q, q_s, \delta, L)$ is the unique measure, μ , satisfying the following. For $u = q_0, q_1, \ldots, q_n$

$$\mu(C_u) = \prod_{i=0}^{n-1} \delta(q_i, q_{i+1})$$

Sampling executions of a Markov Chain generates runs according to this measure.

4 PCTL

PCTL Syntax

Definition 6. The formulas of PCTL over a set of atomic propositions AP are given by the following grammar

$$\varphi ::= \operatorname{true} | a | \neg \varphi | \varphi \land \varphi | P_{\bowtie \theta}(\psi)$$

where $a \in AP$, $\bowtie \in \{<, \leq, >, \geq\}$, $\theta \in \mathbb{R}$, and ψ is a path formula given by the following grammar

$$\psi ::= X\varphi \mid \varphi U\varphi$$

PCTL Semantics State Formulas

Definition 7. Satisfaction of a state formula φ at a state q is inductively defined as follows

- $q \models$ true
- $q \models a$ iff $a \in L(q)$
- $q \models \neg \varphi$ iff q does not satisfy φ
- $q \models \varphi_1 \land \varphi_2$ iff $q \models \varphi_1$ and $q \models \varphi_2$
- $q \models P_{\bowtie \theta}(\psi)$ iff $\mu(\{\pi \in \text{paths}(q) \mid \pi \models \psi\}) \bowtie \theta^{-1}$

PCTL Semantics Path Formulas

Definition 8. Satisfaction of a path formula ψ on a path $\pi = q_0 q_1 \cdots$ is inductively defined as follows

- $\pi \models X\varphi$ iff $q_1 \models \varphi$
- $\pi \models \varphi_1 U \varphi_2$ iff there is an *i* such that $q_i \models \varphi_2$ and for all $j < i, q_j \models \varphi_1$

We say $\mathcal{M} \models \varphi$ iff $q_s \models \varphi$

PCTL Syntax Abbreviations

We will use the following abbreviations

- $\varphi_1 \lor \varphi_2 = \neg(\neg \varphi_1 \land \neg \varphi_2)$
- $\varphi_1 U^{\leq n} \varphi_2$ says that " φ_2 holds within *n* steps and φ_1 holds until then"

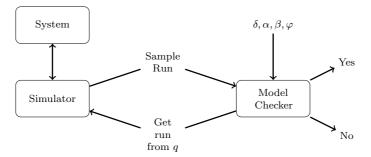
¹For any state q and path formula ψ , { $\pi \in \text{paths}(q) \mid \pi \models \psi$ } is measurable.

Part II Model Checking PCTL

5 Basic Operators

5.1 Overview

Schematic Picture



The system model could be any probabilistic model with a well understood probability space over executions that can be sampled, and a logic over that probability space.

Properties of the Algorithm

Let $\mathcal{A}^{\delta}_{\mathcal{M}}(q,\varphi,\alpha,\beta)$ be the result of the algorithm when checking if φ holds in state q in model \mathcal{M} , with error parameters α and β , and indifference region δ . If \mathcal{M} is such that

C For every subformula of φ of the form $P_{\geq p}(\psi)$ and every state q', the measure of paths satisfying ψ is not in $\left[\frac{p-\delta-\alpha}{1-\alpha}, \frac{p+\delta}{1-\beta}\right]$

then

$$\begin{aligned} &\operatorname{Prob}[\mathcal{A}^{\delta}_{\mathcal{M}}(q,\varphi,\alpha,\beta) = \operatorname{true} \mid q \not\models \varphi] \leq \alpha \quad \text{and} \\ &\operatorname{Prob}[\mathcal{A}^{\delta}_{\mathcal{M}}(q,\varphi,\alpha,\beta) = \operatorname{false} \mid q \models \varphi] \leq \beta \end{aligned}$$

Algorithm Structure

```
 \begin{array}{l} \mathcal{A}^{\delta}_{\mathcal{M}}(q,\varphi,\alpha,\beta) \ \{ \\ \quad \text{switch } (\varphi) \ \{ \\ \quad \text{ case true: return true} \\ \quad \text{ case true: return } (a \in L(q)) \\ \quad \text{ case } \neg \varphi': \text{ return verifyNot}(q,\varphi,\alpha,\beta) \\ \quad \text{ case } \varphi_1 \wedge \varphi_2: \text{ return verifyAnd}(q,\varphi,\alpha,\beta) \\ \quad \text{ case } P_{\geq p}(\psi): \text{ return verifyProb}(q,\varphi,\alpha,\beta) \\ \\ \end{array} \right\}
```

We cannot distinguish between strict and non-strict inequalities in $P_{\bowtie p}(\psi)$. Also, $P_{< p}(\psi)$ is logically equivalent to $\neg P_{\geq p}(\neg \psi)$.

5.2 Algorithm for Boolean Operators

Negation

```
\begin{array}{l} \texttt{verifyNot}(q,\neg\varphi',\alpha,\beta) \ \{\\ \texttt{return} \ \neg \mathcal{A}^{\delta}_{\mathcal{M}}(q,\varphi',\beta,\alpha) \\ \} \end{array}
```

Observe that (inductively)

$$\begin{array}{ll} \beta &> \operatorname{Prob}[\mathcal{A}^{\delta}_{\mathcal{M}}(q,\varphi',\beta,\alpha) = \operatorname{true} \mid q \not\models \varphi'] \\ &= \operatorname{Prob}[\mathcal{A}^{\delta}_{\mathcal{M}}(q,\neg\varphi',\alpha,\beta) = \operatorname{false} \mid q \models \neg\varphi'] \\ \alpha &> \operatorname{Prob}[\mathcal{A}^{\delta}_{\mathcal{M}}(q,\varphi',\beta,\alpha) = \operatorname{false} \mid q \models \varphi'] \\ &= \operatorname{Prob}[\mathcal{A}^{\delta}_{\mathcal{M}}(q,\neg\varphi',\alpha,\beta) = \operatorname{true} \mid q \not\models \neg\varphi'] \end{array}$$

Conjunction

```
\begin{array}{l} \texttt{verifyAnd}(q,\varphi_1 \land \varphi_2, \alpha, \beta) \\ \texttt{return} \ \mathcal{A}^{\delta}_{\mathcal{M}}(q,\varphi_1, \alpha, \beta/2) \land \mathcal{A}^{\delta}_{\mathcal{M}}(q,\varphi_2, \alpha, \beta/2) \\ \} \end{array}
```

Observe that (inductively)

 $\begin{aligned} \operatorname{Prob}[\mathcal{A}_{\mathcal{M}}^{\delta}(q,\varphi_{1}\wedge\varphi_{2},\alpha,\beta) &= \operatorname{false} \mid q \models \varphi_{1}\wedge\varphi_{2}] \\ &= \operatorname{Prob}[\mathcal{A}_{\mathcal{M}}^{\delta}(q,\varphi_{1},\alpha,\beta/2) = \operatorname{false} \lor \mathcal{A}_{\mathcal{M}}^{\delta}(q,\varphi_{2},\alpha,\beta/2) = \operatorname{false} \mid q \models \varphi_{1}\wedge\varphi_{2}] \\ &\leq \operatorname{Prob}[\mathcal{A}_{\mathcal{M}}^{\delta}(q,\varphi_{1},\alpha,\beta/2) = \operatorname{false} \mid q \models \varphi_{1}\wedge\varphi_{2}] + \\ \operatorname{Prob}[\mathcal{A}_{\mathcal{M}}^{\delta}(q,\varphi_{2},\alpha,\beta/2) = \operatorname{false} \mid q \models \varphi_{1}\wedge\varphi_{2}] \\ &= \operatorname{Prob}[\mathcal{A}_{\mathcal{M}}^{\delta}(q,\varphi_{1},\alpha,\beta/2) = \operatorname{false} \mid q \models \varphi_{1}] + \\ \operatorname{Prob}[\mathcal{A}_{\mathcal{M}}^{\delta}(q,\varphi_{2},\alpha,\beta/2) = \operatorname{false} \mid q \models \varphi_{2}] \\ &= \beta/2 + \beta/2 = \beta \end{aligned}$

Conjunction (contd)

Observe that (inductively)

 $\begin{aligned} \operatorname{Prob}[\mathcal{A}_{\mathcal{M}}^{\delta}(q,\varphi_{1}\wedge\varphi_{2},\alpha,\beta) &= \operatorname{true} \mid q \nvDash \varphi_{1}\wedge\varphi_{2}] \\ &\leq & \max(\operatorname{Prob}[\mathcal{A}_{\mathcal{M}}^{\delta}(q,\varphi_{1}\wedge\varphi_{2},\alpha,\beta) = \operatorname{true} \mid q \nvDash \varphi_{1}], \\ & \operatorname{Prob}[\mathcal{A}_{\mathcal{M}}^{\delta}(q,\varphi_{1}\wedge\varphi_{2},\alpha,\beta) = \operatorname{true} \mid q \nvDash \varphi_{2}]) \\ &\leq & \max(\operatorname{Prob}[\mathcal{A}_{\mathcal{M}}^{\delta}(q,\varphi_{1},\alpha,\beta) = \operatorname{true} \mid q \nvDash \varphi_{1}], \\ & \operatorname{Prob}[\mathcal{A}_{\mathcal{M}}^{\delta}(q,\varphi_{2},\alpha,\beta) = \operatorname{true} \mid q \nvDash \varphi_{2}]) \\ &= & \alpha \end{aligned}$

6 Probabilistic Operator

6.1 Simple Formulas

Simple Formulas

Definition 9. A simple formula is of the form $P_{>p}(\psi)$, where

- ψ only uses the path operators X and $U^{\leq n}$, and
- ψ does not have any probabilistic operators

Checking Simple Formulas

To check if q satisfies a simple formula $P_{\geq p}(\psi)$, use either the single sampling plan or sequential hypothesis testing to statistically determine is the measure of paths satisfying ψ is $\geq p$ with indifference region 2δ . Draw samples as follows

Simulate the system from q until you get a finite path that either provably satisfies ψ or provably violates ψ

6.2 Bounded Path Formulas

Bounded Path Formulas

Definition 10. A bounded path formula is of the form $P_{\geq p}(\psi)$, where

• ψ only uses path operators X and $U^{\leq n}$

 ψ may have nested probabilistic operators.

Checking Bounded Path Formulas

Challenge

Consider a formula $P_{>p}(XP_{>p'}(Xa))$, and drawing a sample run $\rho = q, q_1, \ldots$

- We cannot determine if $q_1 \models P_{\geq p'}(Xa)$, and so we don't know if $\rho \models XP_{\geq p'}(Xa)$
- We can statistically determine if $q_1 \models P_{\geq p'}(Xa)$. How do we account for the error in the estimation?

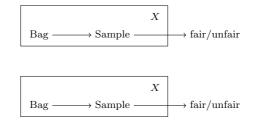
Proportion of Fair Coins

Problem

Given a bag of coins, are most (75%) of the coins fair? If the coins can be physically examined to fair or not, then we have the following situation We can test the random variable X statistically to determine if $Prob[X = fair] \ge 0.75$.

Proportion of Fair Coins

If we cannot physically examine the coins to determine if they will be fair, we still want to test random variable X below. But we observe the following random experiment Y



Relating X and Y

Let X be Bernoulli with parameter p_x and Y be Bernoulli with parameter p_y . Suppose the test has errors (α, β) , we have

$$\begin{aligned} &\operatorname{Prob}[Y = \operatorname{fair} \mid X \neq \operatorname{fair}] \leq \alpha \\ &\operatorname{Prob}[Y \neq \operatorname{fair} \mid X = \operatorname{fair}] \leq \beta \end{aligned}$$

Relating X and Y

Let X be Bernoulli with parameter p_x , Y be Bernoulli with parameter p_y , and test have error (α, β) . Then,

$$p_y = \operatorname{Prob}[Y = \operatorname{fair}]$$

= $\operatorname{Prob}[Y = \operatorname{fair} | X \neq \operatorname{fair}]\operatorname{Prob}[X \neq \operatorname{fair}]$
+ $\operatorname{Prob}[Y = \operatorname{fair} | X = \operatorname{fair}]\operatorname{Prob}[X = \operatorname{fair}]$
$$p_y \leq \alpha(1 - p_x) + 1.p_x$$

$$p_y \geq (1 - \beta)p_x$$

as $\operatorname{Prob}[Y = \operatorname{fair} | X = \operatorname{fair}] \geq 1 - \beta$. This means if $p_x < \frac{p-\delta-\alpha}{1-\alpha}$ then $p_y < p-\delta$ and if $p_x > \frac{p+\delta}{1-\beta}$ then $p_y > p+\delta$. Thus, we sample from Y and test the sample against p with indifference region 2δ .

Algorithm for Bounded Path Formulas

```
\begin{array}{l} \operatorname{verifyProb}(q,P_{\geq p}(\psi),\alpha,\beta) \\ \text{Do as in simple hypothesis testing of Bernoulli variable} \\ \text{except when drawing a sample do the following } \dots \\ \text{Get sample run } \pi \text{ from } q \\ \text{switch } (\psi) \\ \{ \\ \\ \text{case } X\varphi': \text{ return } \mathcal{A}^{\delta}_{\mathcal{M}}(\pi[1],\varphi',\beta,\alpha) \\ \\ \text{case } \varphi_1 U^{\leq n} \varphi_2: \text{ return verifyBUntil}(q,\psi,\alpha,\beta) \\ \} \end{array}
```

Bounded Until

To check if π satisfies $\varphi_1 U^{\leq n} \varphi_2$, we check if there is an $i \leq n$, such that $\pi[i] \models \varphi_2$, and $\pi[j] \models \varphi_1$, for j < i. We do these tests statistically, giving us the following test.

 $\begin{array}{l} \operatorname{verifyBUntil}(q,\varphi_1 \, U^{\leq n} \, \varphi_2, \alpha, \beta) \; \left\{ & \\ \text{for } i=0 \; \text{to} \; n \; \operatorname{do} \\ & \\ \text{if } \mathcal{A}^{\delta}_{\mathcal{M}}(\pi[i],\varphi_2,\beta/n,\alpha) \; \text{then return true} \\ & \\ \text{else if not } \mathcal{A}^{\delta}_{\mathcal{M}}(\pi[i],\varphi_1,\beta/n,\alpha) \; \text{then return false} \end{array} \right\} \end{array}$

Justification for parameters is same as for conjunction.

6.3 Unbounded Until

Unbounded Until

When drawing samples for bounded path formulas we know when to stop simulating

- when checking $X\varphi'$, we simulate the system for one step
- when checking $\varphi_1 U^{\leq n} \varphi_2$, we simulate for at most n steps

But for $\psi = \varphi_1 U \varphi_2$ we don't know when to stop simulation; there maybe no finite prefix that determines the unsatisfiability ψ on a run.

Stopping Probability

We will modify the simulation as follows: at every step, either stop simulation with probability p_s , or continue the simulation with probability $1 - p_s$. Formally, given $\mathcal{M} = (Q, q_s, \delta, L)$, take $\mathcal{M}' = (Q \cup \{q_{\perp}\}, q_s, \delta', L')$ where

- L'(q) = L(q) for $q \in Q$, and $L'(q_{\perp})$ is such that $q_{\perp} \not\models \varphi_2$
- For every $q, q' \in Q$, $\delta'(q, q_{\perp}) = p_s$ and $\delta'(q, q') = (1 p_s)\delta(q, q')$, and $\delta'(q_{\perp}, q_{\perp}) = 1$

Relating the two Markov Chains

Proposition 11. Let the measure of paths in \mathcal{M} from $q \in Q$ satisfying $\varphi_1 U \varphi_2$ be denoted by $p^{\mathcal{M}}$ and the measure in \mathcal{M}' be denoted by $p^{\mathcal{M}'}$. If N is the number of states in \mathcal{M} then

$$p^{\mathcal{M}}(1-p_s)^N \le p^{\mathcal{M}'} \le p^{\mathcal{M}}$$

- *Proof.* The measure of paths from q satisfying $\varphi_1 U \varphi_2$ is obtained by solving a system of equations, through (say) Gaussian elimination
 - Suppose the measure of paths from q is the *i*th variable solved
 - By induction on *i*, that $p^{\mathcal{M}}(1-p_s)^i \leq p^{\mathcal{M}'} \leq p^{\mathcal{M}}$

Checking Unbounded Until Formulas

- Sample finite paths from \mathcal{M}'
- Using the relationship between the Markov Chains \mathcal{M} and \mathcal{M}' setup the hypothesis testing with appropriate indifference regions like the case of nested probabilistic operators

Discussion of Unbounded Until Checking

- The algorithm presented depends on the number of states N, and the stopping probability need to make the conditions workout can be small
- [SVA 05] Another algorithm with possibly better sample performance is as follows
 - Use a special algorithm to check if a state q satisfies $P_{=0}(\varphi_1 U \varphi_2)$, by drawing samples from \mathcal{M}'
 - Draw samples from \mathcal{M} by stopping either when state satisfying φ_2 is encountered or when a state satisfying $P_{=0}(\varphi_1 U \varphi_2)$ is encountered

An Alternate Statistical Approach

- The correctness guarantees of the statistical model checker only apply when the measure of paths satisfying the path subformulas are bounded away from the threshold to which they are compared.
- The basic test for a probabilistic operator tests the hypothesis H_0 : $p' \ge p + \delta$ against the hypothesis H_1 : $p' \le p \delta$
- An alternate approach [SVA04,You06] does two comparisons: (a) the hypothesis $H_0^1: p' \ge p + \delta$ against $H_1^1: p' \le p$, and (b) the hypothesis $H_0^2: p' \le p \delta$ against $H_1^2: p' \ge p$
 - If H_0^1 is accepted over H_1^1 then we say $P_{\geq p}(\psi)$ holds
 - If H_0^2 is accepted over H_1^2 then we say $P_{\geq p}(\psi)$ does not hold
 - If neither of the above cases happen, the algorithm says "unknown"
- The basic probability test can be extended to all of PCTL

Beyond PCTL and Markov Chains

- The statistical model checking approach can be applied to any situation where the model's probability space, simulation algorithm, and specification logic are intrinsically tied, not just Markov Chains and PCTL
- Similar ideas have been used to analyze "real-time" models like CTMC, SMC against CSL specifications
- The approach has also been used to check properties based on FFTs (Session I)

Part III Model Checking Black-Box Systems

7 Introduction

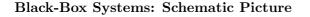
7.1 Motivation

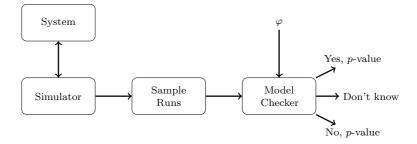
Black-Box Systems

Generating samples from any state of the system as desired maybe unreasonable in certain situations.

- When monitoring/observing a remote system over the network
- When analyzing third-party code

7.2 Problem Setup





Limitations Imposed by Problem Setting

- Since the sample runs are drawn independent of the verification process, the algorithm cannot guarantee the correctness of its result to be within given error bounds.
- Instead, the algorithm will compute a qualitative measure of the confidence in its answer (*p*-value)
- The sample may not contain "statistical witness" for the satisfaction or violation of a property; the algorithm answers "don't know" in such cases

Comments about the Algorithm

- Runs will be assumed to be generated from a "Markovian" process; so suffix of run starting from a state q are faithful samples drawn from path(q)
- Useful results can only be obtained if the sample contains sufficiently many runs from each "relevant state"; thus, the model have finitely many "states" like a DTMC, CTMC
- Since the number of sample runs is finite, and each run is finite, unbounded until operators are essentially bounded until operators

8 The Algorithm

8.1 Probabilistic Operators

Algorithm Structure

```
\begin{array}{c} \texttt{verifyAtState}(q,\varphi) \ \{ \\ \texttt{switch} \ (\varphi) \ \{ \\ \texttt{case true: return } (\texttt{true},0) \\ \texttt{case } a \in AP \text{: return } ((a \in L(q)),0) \\ \texttt{case } \neg \varphi' \text{: return verifyNot}(q,\varphi) \\ \texttt{case } \varphi_1 \land \varphi_2 \text{: return verifyAnd}(q,\varphi) \\ \texttt{case } P_{\geq p}(\psi) \text{: return verifyProb}(q,\varphi) \\ \} \end{array}
```

Algorithm returns a result (true, false, or unknown) and a p-value

Non-nested Probabilistic Operator: Observations

Suppose we want to check if q satisfies $P_{>p}(\psi)$. The n sample runs from q fall into 3 categories

- Those that satisfy ψ ; let there be n_{\top} such runs
- Those that satisfy $\neg \psi$; let there be n_{\perp} such runs
- Those that satisfy neither ψ nor $\neg \psi$. This happens when short. Let there be n_2 such runs

Thus, the sum of all positive observations is at least n_{\perp} , and at most $n - n_{\perp}$.

Non-nested Probabilistic Operators: Algorithm

Let X be the random variable denoting drawing a path from q that satisfies ψ , and let p' be its parameter

- If $n_{\top} > np$ then we say q satisfies $P_{\geq p}(\psi)$ and the confidence in the answer is bounded by $\operatorname{Prob}[\sum X \geq n_{\top} \mid p' = p]$
- If $n n_{\perp} < np$ then we q does not satisfy $P_{\geq p}(\psi)$ and the confidence is bounded by $\operatorname{Prob}[\sum X \leq n n_{\perp} \mid p' = p]$
- Otherwise, we say "don't know"

Nested Probabilistic Operators

- Once again the situation can be modelled as one where instead of observing a random variable X with parameter p_x , the sample provides evidence for another random variable Y with parameter p_y
- If α is the *p*-value associated with *Y*, we can bound p_y as $p_x \alpha p_x \le p_y \le p_x + (1 p_x)\alpha$
- Using these bounds, we can bound the confidence as $\operatorname{Prob}[\sum Y > n_{\top} | p_y = p \alpha p]$ or $\operatorname{Prob}[\sum Y < n n_{\perp} | p_y = p + (1 p)\alpha]$

Nested Probabilistic Operators: Algorithm

8.2 Boolean Operators

Negation

```
\begin{array}{l} \texttt{verifyNot}(q,\neg\varphi') \\ (y,\alpha) = \texttt{verifyState}(q,\varphi') \\ \texttt{return} \ (\neg y,\alpha) \\ \} \end{array}
```

Conjunction

- If q satisfies φ_1 with p-value α_1 and satisfies φ_2 with p-value α_2 then q satisfies $\varphi_1 \wedge \varphi_2$ with p-value max (α_1, α_2)
- If q does not satisfy φ_1 with confidence α_2 (or φ_2 with α_2) then q does not satisfy $\varphi_1 \wedge \varphi_2$ with confidence α_1 (α_2)
- If q does not satisfy φ_1 and φ_2 with confidence α_1 and α_2 , respectively, then q does not satisfy $\varphi_1 \wedge \varphi_2$ with confidence $\min(\alpha_1, \alpha_2)$

Extensions

• Ideas used to check PCTL properties can easily be extended to check properties in CSL

Conclusions

- Statistical hyposthesis testing can be used to verify systems in a model independent way, against a variety of properties
- The techniques have been used in a few case studies (including those discussed in Session I)
- There have also been some examples analyzed to get a better sense of the samples needed, and how the approach compares to more traditional numerical based approach