Infinite-State Verification: From Transition Systems to Markov Chains

Parosh Aziz Abdulla

Uppsala University

September 13, 2009

(Joint work with Noomene Ben Henda, Richard Mayr, and Sven Sandberg)

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Sy

Outline

Infinite-State Transition Systems
VASS

- Model
- Ordering
- Coverability
- Backward Reachability Analysis
- Finite Spanning
- Infinite-State Markov Chains
- Decisive Markov Chains
 - Definition
 - Sufficient Conditions
 - Coarseness
 - Probabilistic VASS
 - Attractors

6

- Probabilistic Lossy Channel Systems
- 5 Qualitative Reachability Analysis
 - Qualitative Repeated Reachability Analysis
 - Approximate Quantitative Reachability Analysis
 - Game Probabilistic Lossy Channel Systems

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Sy

Infinite-State Transition Systems

Infinite-State Transition Systems

Infinite-State Transition Systems

•
$$\{C, \longrightarrow\}$$

• C: (potentially infinite) set of configurations

• \longrightarrow : transition relation

Infinite-State Transition Systems

weak counters: can be incremented or decrementedequivalent to Petri nets

Configuration $c = q_1(2, 0, 4)$

Configuration $c = q_1(2, 0, 4)$

infinitely many configurations

Computation

$$q_1(2,0,4) \longrightarrow q_2(3,0,5) \longrightarrow q_3(3,1,6) \longrightarrow q_2(3,0,6) \longrightarrow \cdots$$

VASS Or

Ordering

Vector Addition Systems with States (VASS) Ordering

Ordering • $q(x, y, z) \le q'(x', y', z')$ iff • q = q'. • $x \le x', y \le y', z \le z'$.

Ordering

Vector Addition Systems with States (VASS) Ordering

Ordering • $q(x, y, z) \le q'(x', y', z')$ iff • q = q'.• $x \le x', y \le y', z \le z'.$

Examples

- $q_1(2,0,3) \leq q_1(4,1,3)$
- $q_1(2,0,3) \leq q_1(1,6,3)$
- $q_1(2,0,3) \not\leq q_2(5,6,3)$

VASS Or

Ordering

Vector Addition Systems with States (VASS) $_{\mbox{Ordering}}$

Upward Closed Sets $(c \in U) \land (c \leq c') \implies (c' \in U)$ VASS Or

Ordering

Vector Addition Systems with States (VASS) Ordering

Upward Closed Sets $(c \in U) \land (c \leq c') \implies (c' \in U)$

Upward Closure

•
$$c\uparrow:=\{c'|c\leq c'\}$$

- $q_1(2,0,3)\uparrow = \{q_1(2,0,3), q_1(3,0,3), q_1(2,0,4), q_1(3,2,6), \ldots\}$
- $q_1(0,0,0)$ $\uparrow = \{q_1(0,0,0), q_1(1,0,0), q_1(0,1,0), q_1(3,2,6), \ldots\}$

Ordering

Vector Addition Systems with States (VASS) Ordering

Upward Closed Sets $(c \in U) \land (c \leq c') \implies (c' \in U)$

Upward Closure

•
$$c\uparrow:=\{c'|c\leq c'\}$$

- $q_1(2,0,3)$ $\uparrow = \{q_1(2,0,3), q_1(3,0,3), q_1(2,0,4), q_1(3,2,6), \ldots\}$
- $q_1(0,0,0)$ $\uparrow = \{q_1(0,0,0), q_1(1,0,0), q_1(0,1,0), q_1(3,2,6), \ldots\}$

Minimal Elements

• $\min(U) := \min$ elements of U wrt. \leq .

Ordering

Vector Addition Systems with States (VASS) Ordering

Upward Closed Sets $(c \in U) \land (c \leq c') \implies (c' \in U)$

Upward Closure

•
$$c\uparrow:=\{c'|c\leq c'\}$$

- $q_1(2,0,3)$ $\uparrow = \{q_1(2,0,3), q_1(3,0,3), q_1(2,0,4), q_1(3,2,6), \ldots\}$
- $q_1(0,0,0)$ $\uparrow = \{q_1(0,0,0), q_1(1,0,0), q_1(0,1,0), q_1(3,2,6), \ldots\}$

Minimal Elements

- $\min(U) := \min$ elements of U wrt. \leq .
- Properties:
 - min(U) is finite
 - $\min(U)\uparrow = U.$

Vector Addition Systems with States (VASS) Coverability

Computation

 $q_1(2,0,4) \longrightarrow q_2(3,0,5) \longrightarrow q_3(3,1,6) \longrightarrow q_2(3,0,6) \longrightarrow \cdots$

Vector Addition Systems with States (VASS) Coverability

Computation

 $q_1(2,0,4) \longrightarrow q_2(3,0,5) \longrightarrow q_3(3,1,6) \longrightarrow q_2(3,0,6) \longrightarrow \cdots$

K-Reachability

•
$$c_1 \xrightarrow{K} c_2$$
: c_1 can reach c_2 within K steps

• $q_1(2,0,4) \xrightarrow{5} q_2(3,0,6)$

Vector Addition Systems with States (VASS) Coverability

Computation

 $q_1(2,0,4) \longrightarrow q_2(3,0,5) \longrightarrow q_3(3,1,6) \longrightarrow q_2(3,0,6) \longrightarrow \cdots$

K-Reachability

•
$$c_1 \xrightarrow{K} c_2$$
: c_1 can reach c_2 within K steps

• $q_1(2,0,4) \xrightarrow{5} q_2(3,0,6)$

Reachability

•
$$c_1 \xrightarrow{*} c_2$$
: c_1 can reach c_2

•
$$q_1(2,0,4) \xrightarrow{*} q_2(3,0,6)$$

Vector Addition Systems with States (VASS) Coverability

Control State Reachability

- Instance:
 - c: configuration
 - q: control state
- Question: $c \xrightarrow{*} q(*, *, *)$?

Vector Addition Systems with States (VASS) Coverability

Control State Reachability

- Instance:
 - c: configuration
 - q: control state
- Question: $c \xrightarrow{*} q(*, *, *)$?

Coverability

- Instance: c₁, c₂: configurations
- Question: $c_1 \xrightarrow{*} c_2 \uparrow$?

Vector Addition Systems with States (VASS) Coverability

From Control State Reachability to Coverability

•
$$c \xrightarrow{*} q(*,*,*)$$
 ?

Vector Addition Systems with States (VASS) Coverability

From Control State Reachability to Coverability

- $c \xrightarrow{*} q(*, *, *)$?
- $c \xrightarrow{*} q(0,0,0)\uparrow$?

Vector Addition Systems with States (VASS) Coverability

From Control State Reachability to Coverability

• $c \xrightarrow{*} q(*,*,*)$? • $c \xrightarrow{*} q(0,0,0)\uparrow$?

From Coverability to Control State Reachability

Vector Addition Systems with States (VASS) Coverability

From Control State Reachability to Coverability

• $c \xrightarrow{*} q(*,*,*)$? • $c \xrightarrow{*} q(0,0,0)\uparrow$?

From Coverability to Control State Reachability

•
$$c \stackrel{*}{\longrightarrow} q(2,0,1) \uparrow$$
 ?

(

Vector Addition Systems with States (VASS) Coverability

From Control State Reachability to Coverability

• $c \xrightarrow{*} q(*,*,*)$? • $c \xrightarrow{*} q(0,0,0)\uparrow$?

From Coverability to Control State Reachability

By monotonicity

if
$$c \xrightarrow{*} (2,0,0)^{\uparrow}$$
 then $c \xrightarrow{2} (2,0,0)^{\uparrow}$

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Sy
Vector Addition Systems with States (VASS) Finite Spanning

Vector Addition Systems with States (VASS) Finite Spanning

VASS finitely spanning for upward closed *F*

Infinite-State Markov Chains

Infinite-State Markov Chains

Infinite-State Markov Chains

- infinite state space
- qualitative and quantitative properties

Infinite-State Markov Chains

$$Prob_s(\phi)$$
:

Probability that a computation

from s satisfies ϕ

Decisive Markov Chains Definition

Decisive Markov Chains

- characterized by a simple property
- cover a wide class of systems
 - Probabilistic VASS (Probabilistic Petri Nets)
 - Probabilistic Lossy Channels Systems
 - Probabilistic Turing Machines
 - Probabilistic Pushdown Systems
- allow qualitative and quantitative properties

Decisive Markov Chains

Decisive Markov Chains

$$\widetilde{F} := \neg \exists \diamond F$$

Decisive Markov Chains Sufficient Conditions

Decisive Markov Chains - Sufficient Conditions

- coarseness and finite spanning
 - Probabilistic VASS (Probabilistic Petri Nets)
 - Probabilistic Turing Machines
- existence of finite attractors
 - Probabilistic Lossy Channels Systems
 - Probabilistic Pushdown Systems

Decisive Markov Chains Sufficient Conditions

Decisive Markov Chains - Sufficient Condition 1

coarseness and finite spanning

- Probabilistic VASS (Probabilistic Petri Nets)
- Probabilistic Turing Machines

PVASS x + y - z - 2q + z + 3

Weights

- Each transition has a weight
- $P(c_1, c_2)$ decided by:

• relative weights of transitions

Example P((1, 0, 2), (0, 1, 3)) = 1 $P((1, 1, 2), (0, 2, 3)) = \frac{2}{5}$

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Sy September 13, 2009

Attractors

Decisive Markov Chains Sufficient Conditions

Decisive Markov Chains - Sufficient Condition 2

• existence of finite attractors

- Probabilistic Lossy Channels Systems
- Probabilistic Pushdown Systems

Attractors

for each s: $Prob_s(\diamondsuit A) = 1$

• Model:

- Finite state processes
- Unbounded lossy channels
- Send & receive operations

- Motivation:
 - Models of communication protocols

m ...

mpp

Sufficient:

- One channel
- One process

- Infinite state space
- Perfect channel = Turing machine

mppm...

m	р	р	m	•••	
---	---	---	---	-----	--

m	р	р	m	•••	
---	---	---	---	-----	--

• Each transition:

each message lost with prob $\lambda > 0$, independently

PLCS

Finite Attractor

set of configurations with empty channels

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Sy. September 13, 2009 21 / 27

PLCS

Qualitative Reachability Analysis

- analyze underlying transition system
- structural properties: reachability of F and \tilde{F}

 $Prob_{Init} (\diamond F) = 1$?

$$Init \models \widetilde{F} \quad \textbf{Before} \quad F$$

implies

$$Prob_{Init} (\diamond F) < 1$$

$$Init \models \tilde{F} \text{ Before } F$$

$$implies$$

$$Prob_{Init} (\diamond F) < 1$$

$$Init \not\models \tilde{F} \quad \textbf{Before} \quad F$$
$$Implies?$$

$$Prob_{Init} (\diamond F) = 1$$

Yes if decisive !!

$$Init \models \tilde{F} \text{ Before } F$$

$$iff$$

$$Prob_{Init} (\diamond F) < 1$$

Yes: PVASS

Yes: NTM

Yes: PLCS

Can we check

$$Init \models \tilde{F} \text{ Before } F ?$$

Can we check

$$Init \models \widetilde{F} \text{ Before } F ?$$

Yes: PVASS -- *F* set of control states

Can we check

$$Init \models \tilde{F}$$
 Before F ?

Yes: PVASS – *F* set of control states

No: PVASS -- **F** upward closed

undecidable

Can we check

$$Init \models \tilde{F}$$
 Before F ?

Yes: PVASS -- F set of control states

No: PVASS -- *F* upward closed

Yes:

PLCS

undecidable

Qualitative Repeated Reachability Analysis

- analyze underlying transition system
- structural properties: reachability of F

 $Prob_{Init} (\Box \Diamond F) = 1$?

 $Prob_{Init} (\Box \diamond F) = 1$?

 $Prob_{Init} (\Box \diamond F) = 1$?

$$Init \not\models \forall \Box \exists \diamond F$$

implies

$$Init \models \forall \Box \exists \diamond F$$

Implies ?

$$Prob_{Init} (\Box \Diamond F) = 1$$

$$Init \models \forall \Box \exists \diamond F$$

Implies ?

$$Prob_{Init} (\Box \Diamond F) = 1$$

Not in general !!

$$Init \models \forall \Box \exists \diamond F$$

Implies ?

 $Prob_{Init} (\Box \Diamond F) = 1$

Yes if decisive !!

$$Init \models \forall \Box \exists \diamond F$$

Implies ?

$$Prob_{Init} (\Box \Diamond F) = 1$$

$$Init \models \forall \Box \exists \diamond F$$

iff

$$Prob_{Init} (\Box \Diamond F) = 1$$

Yes: NTM

Yes: PLCS
Qualitative Repeated Reachability Analysis

Can we check $Init \models \forall \Box \exists \diamond F ?$

Qualitative Repeated Reachability Analysis

Qualitative Repeated Reachability Analysis

Can we check

 $Init \models \forall \Box \exists \diamond F ?$

$$Init \in \widetilde{\left(\widetilde{F}\right)}$$
 ?

Yes: PVASS -- *F* set of local states

Yes: PVASS -- F upward closed

Yes: PLCS -- *F* set of local states decidable

Approximate Quantitative Reachability Analysis

Qualitative Reachability Analysis

(Approximate) Quantitative Reachability Analysis

expand the reachability tree

(Approximate) Quantitative Reachability Analysis

Given ϵ ; compute ρ s.t. $\rho \leq Prob_{Init} (\diamond F) \leq \rho + \epsilon$

Yes: =

No: =

Given ϵ ; compute ρ s.t. $\rho \leq Prob_{Init} (\diamond F) \leq \rho + \epsilon$

Given ϵ ; compute ρ s.t. $\rho \leq Prob_{Init} (\diamond F) \leq \rho + \epsilon$

Given ϵ ; compute ρ s.t. $\rho \leq Prob_{Init} (\diamond F) \leq \rho + \epsilon$

Yes: = Yes + .15

No: =

Given ϵ ; compute ρ s.t. $\rho \leq Prob_{Init} (\diamond F) \leq \rho + \epsilon$

 $N_{0} = N_{0} + .15$

Given ϵ ; compute ρ s.t. $\rho \leq Prob_{Init} (\diamond F) \leq \rho + \epsilon$

Yes: =

No: =

Given ϵ ; compute ρ s.t. $\rho \leq Prob_{Init} (\diamond F) \leq \rho + \epsilon$

Given ϵ ; compute ρ s.t.

 $\rho \leq \operatorname{Prob}_{\operatorname{Init}}(\diamond F) \leq \rho + \epsilon$

Given ϵ ; compute ρ s.t. $\rho \leq Prob_{Init} (\diamond F) \leq \rho + \epsilon$

Decisiveness:

Termination Guaranteed

Quantitative Repeated Reachability Analysis

Given ϵ ; compute ρ s.t. $\rho \leq Prob_{Init} (\Box \diamond F) \leq \rho + \epsilon$

$$Yes: = Yes + .15$$

Finite Attractor: Termination Guaranteed

Stochastic Games with Lossy Channels

Stochastic Games with Lossy Channels

- turn-based stochastic games
- induced by PLCS (Probabilistic Lossy Channel Systems)
- repeated reachability objectives
- almost sure winning conditions
- we show:
 - pure memoryless determined
 - effective construction of winning set of configurations

• Game:

Interaction with evil cracker

Probabilistic: Messages lost randomly (probability λ)

m ...

mpp

Sufficient:

- One channel
- One process
- Each state controlled by a player

- Infinite state space
- Perfect channel = Turing machine

mppm...

mpp

m ...

Transitions:

Transitions:

Probabilistic message loss:

p n n ...

• Each transition:

each message lost with prob $\lambda > 0$, independently

- Every GPLCS induces a stochastic game
- Infinite state
- 3 types of states:
 - Player Good

- Every GPLCS induces a stochastic game
- Infinite state
- 3 types of states:

- Strategy
 = selection of outgoing transitions
- Strategies for Good & BAD
 Only probabilistic choices remain

 "Prob(event)"
 well-defined

- Strategy
 = selection of outgoing transitions
- Strategies for Good & BAD
 Only probabilistic choices remain

 "Prob(event)"
 well-defined

Repeated Reachability for GPLCS

- Input: - GPLCS
 - Set **F** of final states
- Output: Partition of states:

Stochastic Games with Lossy Channels

Algorithm

- Subroutine: Force-set
- algorithm

Subroutine: Force-set

Force-set ≈ "Reachability for games"

- Given target set Q
- Compute the set of states where
 Good can force Prob(reach Q) > 0
- Backward search

- Force-set ≈ "Reachability for games"
 - Given target set Q
 - Compute the set of states where
 Good can force Prob(reach Q) > 0
- Backward search

- Force-set ≈ "Reachability for games"
 - Given target set Q
 - Compute the set of states where
 Good can force Prob(reach Q) > 0
- Backward search

- Force-set ≈ "Reachability for games"
 - Given target set Q
 - Compute the set of states where
 Good can force Prob(reach Q) > 0
- Backward search

- Force-set ≈ "Reachability for games"
 - Given target set Q
 - Compute the set of states where
 Good can force Prob(reach Q) > 0
- Backward search

- Force-set ≈ "Reachability for games"
 - Given target set Q
 - Compute the set of states where
 Good can force Prob(reach Q) > 0
- Backward search

- Force-set ≈ "Reachability for games"
 - Given target set Q
 - Compute the set of states where
 Good can force Prob(reach Q) > 0
- Backward search

- Force-set ≈ "Reachability for games"
 - Given target set Q
 - Compute the set of states where
 Good can force Prob(reach Q) > 0
- Backward search

Subroutine: Force-set Construction

- Force-set ≈ "Reachability for games"
 - Given target set Q
 - Compute the set of states where
 Good can force Prob(reach Q) > 0
- Backward search

1 step before Q_{n-1}

Subroutine: Force-set Correctness

Algorithm Overview

Compute Q: GOOD can force Prob(reach F) > 0

 Compute Q: GOOD can force Prob(reach F) > 0, avoiding I₀ and W₀

- Compute Q: GOOD can force Prob(reach F) > 0, avoiding I₀ and W₀
- **I**₁ = complement(**Q**)

Compute Q:
 Good can force Prob(reach F) > 0, avoiding I₀, W₀, I₁, W₁

- Compute Q: GOOD can force Prob(reach F) > 0, avoiding I₀, W₀, I₁, W₁
- **I**₂ = complement(**Q**)

Algorithm Overview

Algorithm Convergence

Algorithm Convergence

Converges?

YES! for GPLCS (well quasi orders, *difficult*)

Algorithm Correctness

Algorithm Correctness

- No more water
- No more island

Conclusions

- Decisive Markov Chains
- Stochastic Games on LCS
- Other work: Eager Markov Chains:
 - Computing expected reward (cost) of runs
 - Expected residence time

Future Work

- probabilistic timed Petri nets
- distributed systems with probabilistic components