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Infinite-State Transition Systems

Infinite-State Transition Systems

Infinite-State Transition Systems

{C ,−→}
C: (potentially infinite) set of configurations

−→: transition relation
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VASS Model

Vector Addition Systems with States (VASS)
Model
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weak counters: can be incremented or decremented

equivalent to Petri nets
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Computation

q1(2, 0, 4) −→ q2(3, 0, 5) −→ q3(3, 1, 6) −→ q2(3, 0, 6) −→ · · ·
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VASS Ordering

Vector Addition Systems with States (VASS)
Ordering

Ordering

q(x , y , z) ≤ q′(x ′, y ′, z ′) iff

q = q′.
x ≤ x ′, y ≤ y ′, z ≤ z ′.

Examples

q1(2, 0, 3) ≤ q1(4, 1, 3)

q1(2, 0, 3) 6≤ q1(1, 6, 3)

q1(2, 0, 3) 6≤ q2(5, 6, 3)
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VASS Ordering

Vector Addition Systems with States (VASS)
Ordering

Upward Closed Sets

(c ∈ U) ∧ (c ≤ c ′) =⇒ (c ′ ∈ U)

Upward Closure

c↑:= {c ′|c ≤ c ′}
q1(2, 0, 3)↑= {q1(2, 0, 3), q1(3, 0, 3), q1(2, 0, 4), q1(3, 2, 6), . . .}
q1(0, 0, 0)↑= {q1(0, 0, 0), q1(1, 0, 0), q1(0, 1, 0), q1(3, 2, 6), . . .}

Minimal Elements

min(U) := minimal elements of U wrt. ≤.

Properties:

min(U) is finite
min(U)↑ = U.
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VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

Computation

q1(2, 0, 4) −→ q2(3, 0, 5) −→ q3(3, 1, 6) −→ q2(3, 0, 6) −→ · · ·

K -Reachability

c1
K−→ c2: c1 can reach c2 within K steps

q1(2, 0, 4)
5−→ q2(3, 0, 6)

Reachability

c1
∗−→ c2: c1 can reach c2

q1(2, 0, 4)
∗−→ q2(3, 0, 6)
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VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

Control State Reachability

Instance:

c : configuration
q: control state

Question: c
∗−→ q(∗, ∗, ∗)?

Coverability

Instance: c1, c2: configurations

Question: c1
∗−→ c2↑?
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VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

From Control State Reachability to Coverability

c
∗−→ q(∗, ∗, ∗) ?

c
∗−→ q(0, 0, 0)↑ ?

From Coverability to Control State Reachability

c
∗−→ q(2, 0, 1)↑ ?

c
∗−→ q3(∗, ∗, ∗) ?

q

q1 q2 q3
x− x− z−
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VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

Monotonicity

c1 c2≤

c3

c4

≤
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VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

qx+ y - z- x- y+ z+

(2, 0, 0)

(1, 1, 1)

(3, 0, 0)

(0, 2, 2)

(2, 0, 0)

(0, 3, 3)

(1, 1, 1)

By monotonicity

if c
∗−→ (2, 0, 0)↑ then c

2−→ (2, 0, 0)↑
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VASS Finite Spanning

Vector Addition Systems with States (VASS)
Finite Spanning

Finitely Spanning

F : set of target states

∃K ∀c :

if c
∗−→ F then c

K−→ F

VASS

finitely spanning for upward closed F
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Infinite-State Markov Chains

Infinite-State Markov Chains

Infinite-State Markov Chains

infinite state space

qualitative and quantitative properties
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Qualitative Reachability  
Analysis 

F 

Qualitative Repeated 
Reachability Analysis 

Init 

F 

Init 



Decisive Markov Chains Definition

Decisive Markov Chains
Definition

Decisive Markov Chains

characterized by a simple property

cover a wide class of systems

Probabilistic VASS (Probabilistic Petri Nets)
Probabilistic Lossy Channels Systems
Probabilistic Turing Machines
Probabilistic Pushdown Systems

allow qualitative and quantitative properties
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Decisive Markov Chains Sufficient Conditions

Decisive Markov Chains
Sufficient Conditions

Decisive Markov Chains – Sufficient Conditions

coarseness and finite spanning

Probabilistic VASS (Probabilistic Petri Nets)
Probabilistic Turing Machines

existence of finite attractors

Probabilistic Lossy Channels Systems
Probabilistic Pushdown Systems

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 17 / 27



Decisive Markov Chains Coarseness

Decisive Markov Chains
Sufficient Conditions

Decisive Markov Chains – Sufficient Condition 1

coarseness and finite spanning

Probabilistic VASS (Probabilistic Petri Nets)
Probabilistic Turing Machines
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coarseness  
+  

finite spanning 

implies decisiveness 

K-spanning 



coarseness  
+  

finite spanning 

implies decisiveness 

3-spanning 



Decisive Markov Chains Probabilistic VASS

Probabilistic Vector Addition Systems with States (PVASS)

PVASS

qx+ y - z- x- y+ z+
3

2

Weights

Each transition has a weight

P(c1, c2) decided by:

relative weights of transitions

Example

P((1, 0, 2), (0, 1, 3)) = 1

P((1, 1, 2), (0, 2, 3)) = 2
5

finite set of weights =⇒ coarse

PVASS =⇒
coarse

finitely spanning
=⇒ Decisive
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relative weights of transitions

Example

P((1, 0, 2), (0, 1, 3)) = 1

P((1, 1, 2), (0, 2, 3)) = 2
5

finite set of weights =⇒ coarse

PVASS =⇒
coarse

finitely spanning
=⇒ Decisive
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Decisive Markov Chains Attractors

Decisive Markov Chains
Sufficient Conditions

Decisive Markov Chains – Sufficient Condition 2

existence of finite attractors

Probabilistic Lossy Channels Systems
Probabilistic Pushdown Systems
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Implies 



A 

 Finite attractor  Decisiveness 
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A 

 Finite attractor  Decisiveness 



A 

 Finite attractor  Decisiveness 



  

Probabilistic Lossy Channel 
Systems (PLCS)

Process 1

Process 2

Process 3

● Model:
– Finite state processes
– Unbounded lossy channels
– Send & receive operations

● Motivation:
– Models of communication 

protocols



  

!m

?n

m p p m …

A

D

Sufficient:
● One channel
● One process

Properties:
● Infinite state space
● Perfect channel = Turing machine

B

D

A

Probabilistic Lossy Channel 
Systems (PLCS)



  

Transitions:

m p p m …      m

!mSend
A B

m p p m …

!m

?n

A

D

B

D

Probabilistic Lossy Channel 
Systems (PLCS)



  

Transitions:

m       m p p m …

?m
A B

Receive

m p p m …      m

!mSend
A B

m p p m …

!m

?n

A

D

B

D

Probabilistic Lossy Channel 
Systems (PLCS)



  

Transitions:

m       m p p m …

?m
A B

Receive

m p p m …      m

!mSend
A B

No-op A B

!m

?n

m p p m …

A

DD

B

Probabilistic Lossy Channel 
Systems (PLCS)



  

 message loss:

p m n p n …

p n n …

Probabilistic Lossy Channel 
Systems (PLCS)

● Each transition:

each message lost with prob λ > 0,

independently



Decisive Markov Chains Probabilistic Lossy Channel Systems

PLCS

Finite Attractor

set of configurations with empty channels

PLCS =⇒ Finite
Attractor

=⇒ Decisive
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Decisive Markov Chains Probabilistic Lossy Channel Systems

PLCS

Finite Attractor

set of configurations with empty channels

PLCS =⇒ Finite
Attractor

=⇒ Decisive
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Qualitative Reachability Analysis

Qualitative Reachability Analysis

Qualitative Reachability Analysis

analyze underlying transition system

structural properties: reachability of F and F̃
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Implies? 

F 
0.6 

Init 
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Yes if   coarse and finitely 
spanning   !! 
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Implies? 
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Yes: PVASS Yes: NTM Yes: PLCS 

iff 
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PVASS --  F  set of control states 

Can we check 



Qualitative Reachability Analysis 

No: 
PVASS --  F  upward closed 

undecidable 
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Qualitative Reachability Analysis 

No: 
PVASS --  F  upward closed 

Yes: 
PLCS                                           

undecidable 

Can we check 

Yes: 
PVASS --  F  set of control states 



Qualitative Repeated Reachability Analysis

Qualitative Repeated Reachability Analysis

Qualitative Repeated Reachability Analysis

analyze underlying transition system

structural properties: reachability of F

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 23 / 27



Qualitative Repeated Reachability Analysis 



Qualitative Repeated Reachability Analysis 



Qualitative Repeated Reachability Analysis 



Qualitative Repeated Reachability Analysis 

implies 



Qualitative Repeated Reachability Analysis 

implies 

Init 



Qualitative Repeated Reachability Analysis 

Implies ? 



Qualitative Repeated Reachability Analysis 

Implies ? 

Not in general  !! 
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Yes if   decisive   !! 

Implies ? 
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Qualitative Repeated Reachability Analysis 

Yes if   finite attractor 
exists   !! 

Yes if   coarse and finitely 
spanning   !! 

Yes: PVASS Yes: NTM Yes: PLCS 

Implies ? 

Yes if   decisive   !! 



Yes: PVASS Yes: NTM Yes: PLCS 

Qualitative Repeated Reachability Analysis 

iff 



Can we check 

Qualitative Repeated Reachability Analysis 



Qualitative Repeated Reachability Analysis 

Can we check 



Yes: 
PVASS --  F  set of local states 

Yes: 
PVASS --  F  upward closed 

Yes: 
PLCS --  F  set of local states 

decidable 

Qualitative Repeated Reachability Analysis 

Can we check 



Approximate Quantitative Reachability Analysis

Qualitative Reachability Analysis

(Approximate) Quantitative Reachability Analysis

expand the reachability tree
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(Approximate) Quantitative Reachability Analysis 

Yes: = 

No: = 

Init 
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.2 .3 .5 

Yes: = 

No: = 
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.5 
Yes: = 

No: = 

.2 .3 .5 

Init 



Quantitative Reachability Analysis 
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No: = 
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.2 .3 .5 

.5 

.8 .1 .1 

Init 



Quantitative Reachability Analysis 

.2 .3 .5 

.5 

.8 .1 .1 

After Termination:  

Init 



Quantitative Reachability Analysis 

.2 .3 .5 

.5 

.8 .1 .1 

Decisiveness: 
Termination Guaranteed 

Init 



.2 .3 .5 

.5 

Init 

Finite Attractor: 
Termination Guaranteed 

Quantitative Repeated Reachability Analysis 

Yes: = Yes + .15 



Game Probabilistic Lossy Channel Systems

Stochastic Games with Lossy Channels

Stochastic Games with Lossy Channels

turn-based stochastic games

induced by PLCS (Probabilistic Lossy Channel Systems)

repeated reachability objectives

almost sure winning conditions

we show:

pure memoryless determined
effective construction of winning set of configurations
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Game Probabilistic
Lossy Channel Systems (GPLCS)

Process 1

Process 3

λ

Evil
Cracker

● Game:
Interaction with evil cracker

● Probabilistic:
Messages lost randomly
(probability λ)

λ

λ
λ λ

λ

λ
λ



!m

?n

m p p m …

A

D

Game Probabilistic
Lossy Channel Systems (GPLCS)

B

C

Sufficient:
● One channel
● One process
● Each state controlled by a player

Properties:
● Infinite state space
● Perfect channel = Turing machine



!m

?n

m p p m …

A

D

B

C

State:  s = (A, mpnn)

Game Probabilistic
Lossy Channel Systems (GPLCS)



Transitions:

m p p m …      m

!mSend
A B

!m

?n
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A

D

B

C

Game Probabilistic
Lossy Channel Systems (GPLCS)



Transitions:
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?m
A B

Receive

m p p m …      m

!mSend
A B

!m

?n

m p p m …

A

D

B

C

Game Probabilistic
Lossy Channel Systems (GPLCS)



Transitions:

m       m p p m …

?m
A B

Receive

m p p m …      m

!mSend
A B

No-op
A B

!m

?n

m p p m …

A

D

B

C

Game Probabilistic
Lossy Channel Systems (GPLCS)



Probabilistic message loss:

p m n p n …

p n n …

● Each transition:

each message lost with prob λ > 0,

independently

Game Probabilistic
Lossy Channel Systems (GPLCS)



Stochastic Games

● Every GPLCS induces a stochastic game
● Infinite state
● 3 types of states:

– Player GOOD

– Player BAD

– Player RANDOM

0.10.2 0.7

0.4

0.6
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Stochastic Games

● Strategy
= selection of outgoing transitions

● Strategies for GOOD & BAD

       Only probabilistic
        choices remain

         “Prob(event)”
          well-defined

0.10.2 0.7

0.4

0.6



Stochastic Games

● Strategy
= selection of outgoing transitions

● Strategies for GOOD & BAD

       Only probabilistic
        choices remain

         “Prob(event)”
          well-defined

0.10.2 0.7

0.4

0.6



Repeated Reachability
for GPLCS

● Input:
– GPLCS
– Set F of final states

● Output: Partition of states:

Winning for BAD Winning for GOOD

GOOD forces
Prob(reach F inf. often) = 1

BAD forces
Prob(reach F inf. often) < 1



Game Probabilistic Lossy Channel Systems Algorithm

Stochastic Games with Lossy Channels

Algorithm

Subroutine: Force-set

algorithm
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Subroutine: Force-set

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Q

Prob > 0
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● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search Q2 = 1 step before Q1

Q0 = Q
Q1
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Subroutine: Force-set
Construction

Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

GOOD states that
can go to Q1

BAD states that
must go to Q1

RANDOM states that
can go to Q1

Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0



Subroutine: Force-set
Construction

∙ ∙ ∙                          Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search Qn = 1 step before Qn-1

Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0



Subroutine: Force-set
Convergence

∙ ∙ ∙                          Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search Qn = 1 step before Qn-1

Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

Converges?



Subroutine: Force-set
Convergence

∙ ∙ ∙                          Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search Qn = 1 step before Qn-1

Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

Converges?

YES! for GPLCS
(well quasi orders)



Subroutine: Force-set
Correctness

∙ ∙ ∙                          Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Correct?

Qn = 1 step before Qn-1
Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0



Subroutine: Force-set
Correctness

∙ ∙ ∙                          Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Correct?

Qn = 1 step before Qn-1
Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

YES!
(and I'll show why)



Subroutine: Force-set
Correctness

∙ ∙ ∙                          Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Correct?

Qn = 1 step before Qn-1
Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

In Qn, GOOD can force
Prob(reach Q ) > 0
by construction



Subroutine: Force-set
Correctness

∙ ∙ ∙                          Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Correct?

Qn = 1 step before Qn-1
Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

In Qn, GOOD can force
Prob(reach Q ) > 0
by construction

Outside Qn, BAD can force
Prob(reach Q ) = 0
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● I0 = complement(Q)
● So BAD can force Prob(reach F) = 0 on I0
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● Compute Q:
GOOD can force Prob(reach F) > 0, avoiding  I0,W0,I1,W1
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In Wn:
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(since Prob(reach In) > 0)

In I0:
Prob(reach F inf. often) < 1

(since even
Prob(reach F) = 0)

So BAD wins
with prob. > 0

in all Wn, In

BAD can force
Prob(reach F inf. often)  < 1
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Algorithm
Correctness

F                               ∙ ∙ ∙                                           I2                                  W1                        I1              W0 I0

Correct?

So GOOD can force:
Always Prob(reach F ) > 0

● Convergence means:
– No more water  GOOD can stay outside In, Wn
– No more island  GOOD can force Prob(reach F ) > 0

For GPLCS, this implies
Prob(reach F inf. often) = 1

(using attractors, difficult)

GOOD can force
Prob(reach F inf. often) = 1



Conclusions and Future Work

Conclusions

Decisive Markov Chains

Stochastic Games on LCS

Other work: Eager Markov Chains:

Computing expected reward (cost) of runs
Expected residence time

Future Work

probabilistic timed Petri nets

distributed systems with probabilistic components
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