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Introduction: rare events

Rare events occur when dealing with performance evaluation in many
different areas

in telecommunication networks: loss probability of a small unit of
information (a packet, or a cell in ATM networks), connectivity of a
set of nodes,

in dependability analysis: probability that a system is failed at a given
time, availability, mean-time-to-failure,

in air control systems: probability of collision of two aircrafts,

in particle transport: probability of penetration of a nuclear shield,

in biology: probability of some molecular reactions,

in insurance: probability of ruin of a company,

in finance: value at risk (maximal loss with a given probability in a
predefined time),

...

G. Rubino and B. Tuffin (INRIA) Monte Carlo & Rare Events QEST, Sept. 2009 4 / 72



What is a rare event? Why simulation?

A rare event is an event occurring with a small probability.

How small? Depends on the context.

In many cases, these probabilities can be between 10−8 and 10−10, or
even at lower values. Main example: critical systems, that is,

◮ systems where the rare event is a catastrophic failure with possible
human losses,

◮ or systems where the rare event is a catastrophic failure with possible
monetary losses.

In most of the above problems, the mathematical model is often too
complicated to be solved by analytic or numeric methods because

◮ the assumptions are not stringent enough,
◮ the mathematical dimension of the problem is too large,
◮ the state space is too large to get a result in reasonable time,
◮ ...

Simulation is, most of the time, the only tool at hand.
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Monte Carlo

In all the above problems, the goal is to compute µ = E[X ] for some
random variable X (that is, it can be written in this form).

Monte Carlo simulation (in its basic form) generates n independent
copies of X , (Xi , 1 ≤ i ≤ n). Then,

◮ X̄n =
1

n

n∑

i=1

Xi is an approximation (an estimation) of µ;

◮ X̄n → µ with probability 1, as n → ∞ (Strong Law of Large Numbers).

G. Rubino and B. Tuffin (INRIA) Monte Carlo & Rare Events QEST, Sept. 2009 7 / 72



Accuracy: how accurate is X̄n? We can evaluate the accuracy of X̄n

by means of the Central Limit Theorem, which allows us to build the
following confidence interval:

CI =

(
X̄n −

cασ√
n

, X̄n +
cασ√

n

)

◮ meaning: P(µ ∈ CI ) ≈ 1 − α; α: confidence level
◮ (that is, on a large number M of experiences (of estimations of µ using

X̄n), we expect that in roughly a fraction α of the cases (in about αM

cases), the confidence interval doesn’t contain µ)
◮ cα = Φ−1(1 − α/2) where Φ is the cdf of N (0, 1)
◮ σ2 = Var[X ] = E[X 2] − E

2[X ], usually unknown and estimated by

S2
n =

1

n − 1

n∑

i=1

X 2
i − n

n − 1
X̄ 2

n .

G. Rubino and B. Tuffin (INRIA) Monte Carlo & Rare Events QEST, Sept. 2009 8 / 72



Remarks on the confidence interval

Size of the confidence interval: 2cασ/
√

n.

The smaller α, the more confident we are in the result:

P( µ belongs to CI ) ≈ 1 − α.

But, if we reduce α (without changing n), cα increases:
◮ α = 10% gives cα = 1.64,
◮ α = 5% gives cα = 1.96,
◮ α = 1% gives cα = 2.58.

The other way to have a better confidence interval is to increase n.

The 1/
√

n factor says that to reduce the width of the confidence
interval by 2, we need 4 times more replications.
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A fundamental example: evaluating integrals

Assume µ =

∫

I

f (x) dx < ∞, with I an interval in R
d .

With an appropriate change of variable, we can assume that
I = [0, 1]d .

There are many numerical methods available for approximating µ.
Their quality is captured by their convergence speed as a function of
the number of calls to f , which we denote by n.
Some examples:

◮ Trapezoidal rule; convergence speed is in n−2/d ,
◮ Simpson’s rule; convergence speed is in n−4/d ,
◮ Gaussian quadrature method having m points; convergence speed is in

n−(2m−1)/d .

For all these methods, the speed decreases when d increases
(and → 0 when d → ∞).
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The “independence of the dimension”

Let now X be an uniform r.v. on the cube [0, 1]d .

We immediately have µ = E[X ], which opens the path to the Monte
Carlo technique for approximating µ statistically.

We have that

◮ X̄n is an estimator of our integral,
◮ and that the convergence speed, as a function of n, is in n−1/2, thus

independent of the dimension d of the problem.

This independence of the dimension of the problem in the
computational cost is the main advantage of the Monte Carlo
approach over quadrature techniques.

In many cases, it means that quadrature techniques can not be
applied, and that Monte Carlo works in reasonable time with good
accuracy.
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Other examples

Reliability at t:

◮ C (t) is the configuration of a multicomponent system at time t;
◮ s(c) = 1( when configuration is c , system is operational )
◮ X (t) = 1( s(C (u)) = 1 for all u ≤ t )
◮ X̄n(t) = n−1

∑n

i=1 Xi (t) is an estimator of the reliability at t, with
X1(t), · · · , Xn(t) n iid copies of X (t).

Mean waiting time in equilibrium:

◮ Xi is the waiting time of the ith customer arriving to a stationary
queue,

◮ X̄n is an estimator of the mean waiting time in equilibrium.

etc.
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Improving Monte Carlo methods

Given a problem (that is, given X ), there are possibly many
estimators for approximating µ = E(X ).

For any such estimator X̃ , we can usually write

X̃ = φ(X1, · · · ,Xn)

where X1, · · · ,Xn are n copies of X , not necessarily independent in
the general case.

How to compare X̃ with the standard X̄? Or how to compare two
possible estimators of µ, X̃1 and X̃2?

Which good property for a new estimator X̃ must we look for?

A first example is unbiasedness: X̃ is unbiased if E(X̃ ) = µ, which
obviously looks as a desirable property.

Note that there are many useful estimators that are not unbiased.

G. Rubino and B. Tuffin (INRIA) Monte Carlo & Rare Events QEST, Sept. 2009 13 / 72



From the accuracy point of view, the smaller the variability of an
unbiased estimator (the smaller its variance), the better its accuracy.

For instance, in the case of the standard estimator X̄ , we have seen
that its accuracy is captured by the size of the associated confidence
interval, 2cασ/

√
n.

Now observe that this confidence interval size can be also written
2cα
√

V(X̄ ) .

A great amount of effort has been done in the research community
looking for new estimators of the same target µ having smaller and
smaller variances.

Another possibility (less explored so far) is to reduce the
computational cost.

Let’s look at this in some detail, focusing on the variance problem.
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Before looking at some ideas developed to build estimators with
“small” variances, let us look more formally at the accuracy concept.

The variability of an estimator X̃n of µ is formally captured by the
Mean Squared Error

MSE(X̃n) = E[(X̃ − µ)2], = V(X̃n) + B
2(X̃n),

where B(X̃n) is the Biais of X̃n,

B(X̃n) =
∣∣E(X̃n) − µ

∣∣.

Recall that many estimators are unbiased, meaning that E(X̃n) = µ,
that is, B(X̃n) = 0 (and then, that MSE(X̃n) = V(X̃n)).

The dominant term is often the variance one.

In the following refresher, the goal is to estimate µ = E(X ) where X

has cdf F and variance σ2. Recall that V(X̄n) = σ2/n.
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Variance reduction: antithetic variables

Suppose n is even, that is, n = 2k.

Assume that the ith replication Xi is obtained using Xi = F−1(Ui ),
with U1, · · · ,Un i.i.d. with the Uniform(0,1) distribution.

Let us define a new estimator X̃2k using half the previous number of
uniform r.v.: X̃2k is built from U1, · · · ,Uk using

X̃2k =
1

2k

k∑

j=1

[
F−1(Uj) + F−1(1 − Uj)

]
.

Observe that if U is Uniform(0,1), 1 − U has the same distribution
and both variables are negatively correlated:

Cov(U, 1 − U) = E[U(1 − U)] − E(U)E(1 − U) = −1/12.
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For the variance of X̃2k ,

V(X̃2k) =
1

4k2

k∑

j=1

V(Yj + Zj),

with Yj = F−1(Uj) and Zj = F−1(1 − Uj).

After some algebra, writing back 2k = n,

V(X̃n) =
1

n

(
σ2 + Cov(Y ,Z )

)
,

with (Y ,Z ) representing any generic pair (Yj ,Zj).

It can now be proven that Cov(Y ,Z ) ≤ 0, due to the fact that F−1 is
not decreasing and that U and 1 − U are negatively correlated, and
thus

V(X̃n) ≤ V(X̄n).

This technique is called antithetic variables in Monte Carlo theory.
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Variance reduction: common variables

Suppose now that X is naturally sampled as X = Y − Z , Y and Z

being two r.v. defined on the same space, and dependent.

Let us denote V(Y ) = σ2
Y , V(Z ) = σ2

Z , Cov(Y ,Z ) = CY ,Z

The standard estimator of µ is simply

X̄n = Ȳn − Z̄n.

Its variance is

V(X̄n) =
1

n

(
σ2

Y + σ2
Z − 2CY ,Z

)
.

To build Ȳn and Z̄n we typically use Yi = F−1
Y (U1,i) and

Zj = F−1
Z (U2,j) where the Um,h, m = 1, 2, h = 1, · · · , n, are iid

Uniform(0,1) r.v. and FY , FZ are the respective cdf of Y and Z .
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Suppose now that we sample each pair (Yk ,Zk) with the same

uniform r.v. Uk : Yk = F−1
Y (Uk) and Zk = F−1

Z (Uk).

Using the fact that F−1
Y and F−1

Z are non increasing, we can easily
prove that Cov(Yk ,Zk) ≥ 0.

This means that if we define a new estimator X̃n as

X̃n =
1

n

n∑

k=1

[
F−1

Y (Uk) − F−1
Z (Uk)

]

we have
E(X̃n) = E(X̄n) = µ,

and
V(X̃n) ≤ V(X̄n).

This technique is called common variables in Monte Carlo theory.
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Variance reduction: control variables

Here, we suppose that there is an auxiliary r.v. C correlated with X ,
with known mean E(C ) and easy to sample.

Define X̃ = X + γ(C − E(C )) for an arbitrary coefficient γ > 0. See
that E(X̃ ) = µ.

We have V(X̃ ) = σ2 − 2γCov(X ,C ) + γ2
V(C ).

If Cov(X ,C ) and V(C ) are known, we set γ = Cov(X ,C )/V(C ) and
we get

X̃ =
(
1 − ̺2

X ,C

)
σ2 ≤ σ2,

̺X ,C being the coefficient of correlation between X and C .
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Variance reduction: conditional Monte Carlo

Assume we have an auxiliary r.v. C , correlated with X , such that
E(X |C ) is available analytically and C is easy to sample.

Since E[E(X |C )] = µ, the r.v. E(X |C ) is an unbiased estimator
of µ.

From
σ2 = V(X ) = V[E(X |C )] + E[V(X |C )],

we get
V[E(X |C )] = σ2 − E[V(X |C )] ≤ σ2

because V(X |C ) and thus E[V(X |C )] are non negative.

The corresponding estimator is

X̃n =
1

n

n∑

i=1

E(X |Ci ).
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Monte Carlo drawbacks

So, is there any problem with Monte Carlo approach?

Main one: the rare event problem

Another one: specification/validation of models

This tutorial focuses on the main one

There are many techniques for facing the rare event problem:

◮ for example, we have the variance reduction techniques described
before (there are other similar methods available);

◮ we will focus on the most effective ones in case of performance or
dependability (or performability) problems: importance sampling and
splitting.

G. Rubino and B. Tuffin (INRIA) Monte Carlo & Rare Events QEST, Sept. 2009 22 / 72



On accuracy

Resuming: how to improve the accuracy? Acceleration

◮ either by decreasing the simulation time to get a replication
◮ or by reducing the variance of the estimator.

For rare events, acceleration required! (see next slide).
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What is crude simulation?

Assume we want to estimate µ = P(A) for some rare event A.

Crude Monte Carlo: simulates the model directly.

Estimation

µ ≈ µ̂n =
1

n

n∑

i=1

Xi

where the Xi are i.i.d. copies of Bernoulli r.v. X = 1A.

σ[Xi ] = µ(1 − µ) for a Bernoulli r.v.
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Inefficiency of crude Monte Carlo: relative error

Confidence interval
(

µ̂n − cα

√
µ(1 − µ)

n
, µ̂n + cα

√
µ(1 − µ)

n

)

estimated by
(

µ̂n − cα

√
µ̂n(1 − µ̂n)

n
, µ̂n + cα

√
µ̂n(1 − µ̂n)

n

)

where cα is the 1 − α/2 quantile of the normal distribution, for n

large enough (Student law used otherwise).

Relative half width cασ/(
√

nµ) = cα

√
(1 − µ)/µ/n → ∞ as µ → 0.

For a given relative error RE , the required value of

n = (cα)2
1 − ǫ

RE 2ǫ
,

inversely proportional to µ.
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Inefficiency of crude Monte Carlo: occurence of the event

To get a single occurence, we need in average 1/µ replications (109

for µ = 10−9).

If no observation the returned interval is (0, 0)

Otherwise, if (unlikely) one observation when n ≪ 1/µ,
over-estimation of mean and variance

In general, bad coverage of the confidence interval unless n ≫ 1/µ.

As we can see, something has to be done to accelerate the occurence
(and reduce variance).

An estimator has to be “robust” to the rarity of the event.
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Modelling analysis of robustness: parameterisation of rarity

In rare-event simulation models, we often parameterize with a rarity
parameter ǫ > 0 such that µ = E[X (ǫ)] → 0 as ǫ → 0.

Typical example
◮ For a direct Bernoulli r.v. X = 1A, ǫ = µ = E[1A].
◮ When simulating a system involving failures and repairs, ǫ can be the

rate or probability of individual failures.
◮ For a queue or a network of queues, when estimating the overflow

probability, ǫ = 1/C inverse of the capaciy of the considered queue.

The question is then: how does an estimator behave as ǫ → 0, i.e.,
the event becomes rarer?
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Robustness properties: Bounded relative error (BRE)

An estimator X (ǫ) is said to have bounded relative variance (or
bounded relative error) if σ2(X (ǫ))/µ2(ǫ) is bounded uniformly in ǫ.
Equivalent to saying that σ(X (ǫ))/µ(ǫ) is bounded uniformly in ǫ.

Interpretation: estimating µ(ǫ) with a given relative accuracy can be
achieved with a bounded number of replications even if ǫ → 0.

When the confidence interval comes from the central limit theorem, it
means that the relative half width

cα
σ(X (ǫ))√

n

remains bounded as ǫ → 0.
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Robustness properties: Asymptotic Optimality (AO)

BRE has often been found difficult to verify in practice (ex: queueing
systems).

Weaker property: asymptotic optimality (or logarithmic efficiency) if

lim
ǫ→0

ln(E[X 2(ǫ)])

ln(µ(ǫ))
= 2.

Equivalent to say that limǫ→0 ln(σ2[X (ǫ)])/ ln(µ(ǫ)) = 2.

Property also called logarithmic efficiency or weak efficiency.

Quantity under limit is always positive and less than or equal to 2:
σ2[X (ǫ)] ≥ 0, so E[X 2(ǫ)] ≥ (µ(ǫ))2 and then ln E[X 2(ǫ)] ≥ 2 ln µ(ǫ),
i.e.,

ln E[X 2(ǫ)]

lnµ(ǫ)
≤ 2.

Interpretation: the second moment and the square of the mean go to
zero at the same exponential rate.
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Relation between BRE and AO

AO weaker property: if we have BRE, ∃κ > 0 such that
E[X 2(ǫ)] ≤ κ2µ2(ǫ), i.e., ln E[X 2(ǫ)] ≤ lnκ2 + 2 lnµ(ǫ), leading to
limǫ→0 ln E[X 2(ǫ)]/ ln µ(ǫ) ≥ 2. Since this ratio is always less than 2,
we get the limit 2.

Not an equivalence. Some counter-examples:
◮ an estimator for which γ = e−η/ε with η > 0, but for which the

variance is Q(1/ε)e−2η/ε with Q a polynomial;
◮ exponential tilting in queueing networks.

Other robustness measures exist (based on higher degree moments,
on the Normal approximation, on simulation time...)
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Work-normalized properties

Variance is not all, generation time is important (figure of merit).

Let σ2
n(ǫ) and tn(ǫ) be the variance and generation time tn(ǫ) for a

sample of size n.

When tn(ǫ) is strongly dependent on ǫ, any behavior is possible:
increasing or decreasing to 0 as ǫ → 0.

Work-normalized versions of the above properties:
◮ The estimator verifies work-normalized relative variance if

σ2
n(ǫ)tn(ǫ)

µ2(ǫ)

is upper-bounded whatever the rarity, and is therefore a
work-normalized version of the bounded relative error property.

◮ The estimator verifies work-normalized asymptotic optimality if

lim
ǫ→0

ln tn(ǫ) + lnσ2
n(ǫ)

lnµ(ǫ)
= 2.
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Importance Sampling (IS)

Let X = h(Y ) for some function h where Y obeys some probability
law P.
IS replaces P by another probability measure P̃, using

E [X ] =

∫
h(y)dP(y) =

∫
h(y)

dP(y)

d P̃(y)
d P̃(y) = Ẽ [h(Y )L(Y )]

◮ L = dP/d P̃ likelihood ratio,
◮ Ẽ is the expectation associated with probability law P̃.

Required condition: d P̃(y) 6= 0 when h(y)dP(y) 6= 0.

If P and P̃ continuous laws, L ratio of density functions f (y)/f̃ (y).

E [X ] =

∫
h(y)f (y)dy =

∫
h(y)

f (y)

f̃ (y)
f̃ (y)dy = Ẽ [h(Y )L(Y )] .

If P and P̃ are discrete laws, L ratio of indiv. prob p(yi )/p̃(yi )

E [X ] =
∑

i

h(yi )p(yi ) =
∑

i

h(yi )
p(yi )

p̃(yi )
p̃(yi ) = Ẽ [h(Y )L(Y )] .
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Estimator and goal of IS

Take (Yi , 1 ≤ i ≤ n) i.i.d; copies of Y , according to P̃. The estimator
is

1

n

n∑

i=1

h(Yi)L(Yi ).

The estimator is unbiased:

E

[
1

n

n∑

i=1

h(Yi)L(Yi )

]
=

1

n

n∑

i=1

E [h(Yi)L(Yi )] = µ.

Goal: select probability law P̃ such that

σ̃2[h(Y )L(Y )] = Ẽ[(h(Y )L(Y ))2] − µ2 < σ2[h(Y )].

It means changing the probability distribution such that the 2nd
moment is smaller.
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IS difficulty: system with exponential failure time

Y : exponential r.v. with rate λ.

A =“failure before T”= [0,T ].

Goal: compute µ = E[1A(Y )] = 1 − e−λT .

Use for IS an exponential density with a different rate λ̃

Ẽ[(1A(Y )L(Y ))2] =

Z T

0

„

λe−λy

λ̃e−λ̃y

«2

λ̃e−λ̃ydy =
λ2(1 − e−(2λ−λ̃)T )

λ̃(2λ − λ̃)
.

Variance ratio for T = 1 and λ = 0.1:

λ̃
λ = 0.1 1 2 3 4 5 6 7

variance ratio σ̃2(1A(Y )L(Y ))/σ2(1A(Y ))

0

0.5

1

1.5

2
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If A = [T ,∞), i.e., µ = P[Y ≥ T ], and IS with exponential with rate

λ̃:

Ẽ[(1A(Y )L(Y ))2] =

Z

∞

T

„

λe−λy

λ̃e−λ̃y

«2

λ̃e
−λ̃y

dy =
λ2e−(2λ−λ̃)T

λ̃(2λ − λ̃)
.

Minimal value computable, but infinite variance wen λ̃ > 2λ. If λ = 1:

λ̃
0 0.25 0.5 0.75 λ = 1 1.25

variance ratio

0

0.5

1

1.5

2

2.5
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Optimal estimator for estimating E[h(Y )] =
∫

h(y)L(y)d P̃(y)

Optimal change of measure:

P̃ =
|h(Y )|

E[|h(Y )|]dP.

Proof: for any alternative IS measure P
′, leading to the likelihood

ratio L′ and expectation E
′,

Ẽ[(h(Y )L(Y ))2] = (E[|h(Y )|])2 = (E′[|h(Y )|L′(Y )])2 ≤ E
′[(h(Y )L′(Y ))2].

If h ≥ 0, Ẽ[(h(Y )L(Y ))2] = (E[h(Y )])2, i.e., σ̃2(h(Y )L(Y )) = 0.
That is, IS provides a zero-variance estimator.

Implementing it requires knowing E[|h(Y )|], i.e. what we want to
compute; if so, no need to simulation!

But provides a hint on the general form of a “good” IS measure.
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IS for a discrete-time Markov chain (DTMC) {Yj , j ≥ 0}
X = h(Y0, . . . ,Yτ ) function of the sample path with

◮ P = (P(y , z) transition matrix, π0(y) = P[Y0 = y ], initial probabilities
◮ up to a stopping time τ , first time it hits a set ∆.
◮ µ(y) = Ey [X ].

IS replaces the probabilities of paths (y0, . . . , yn),

P[(Y0, . . . ,Yτ ) = (y0, . . . , yn)] = π0(y0)
n−1∏

j=1

P(yj−1, yj),

by P̃[(Y0, . . . ,Yτ ) = (y0, . . . , yn)] st Ẽ[τ ] < ∞.

For convenience, the IS measure remains a DTMC, replacing P(y , z)
by P̃(y , z) and π0(y) by π̃0(y).

Then L(Y0, . . . ,Yτ ) =
π0(Y0)

π̃0(Y0)

τ−1∏

j=1

P(Yj−1,Yj)

P̃(Yj−1,Yj)
.
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Illustration: a birth-death process

Markov chain with state-space {0, 1, . . . ,B}, P(y , y + 1) = py and
P(y , y − 1) = 1 − py , for y = 1, . . . ,B − 1

∆ = {0,B}, and let µ(y) = P[Yτ = B | Y0 = y ].

Rare event if B large or the py s are small.

If py = p < 1 for y = 1, . . . ,B − 1, known as the gambler’s ruin
problem.

An M/M/1 queue with arrival rate λ and service rate µ > λ fits the
framework with p = λ/(λ + µ).

How to apply IS: increase the py s to p̃y to accelerate the occurence
(but not too much again).

Large deviation theory applies here, when B increases.
◮ Strategy for an M/M/1 queue: exchange λ and µ
◮ Asymptotic optimality, but no bounded relative error.
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Zero-variance IS estimator for Markov chains simulation

Restrict to an additive (positive) cost

X =

τ∑

j=1

c(Yj−1,Yj)

Is there a Markov chain change of measure yielding zero-variance?

Yes we have zero variance with

P̃(y , z) =
P(y , z)(c(y , z) + µ(z))∑

w P(y ,w)(c(y ,w) + µ(w))

=
P(y , z)(c(y , z) + µ(z))

µ(y)
.

Without the additivity assumption the probabilities for the next state
must depend in general of the entire history of the chain.
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Zero-variance for Markov chains

Proof by induction on the value taken by τ , using the fact that
µ(Yτ ) = 0 In that case, if X̃ denotes the IS estimator,

X̃ =
τ∑

i=1

c(Yi−1, Yi )
i∏

j=1

P(Yj−1, Yj)

P̃(Yj−1, Yj)

=
τ∑

i=1

c(Yi−1, Yi )
i∏

j=1

P(Yj−1, Yj)µ(Yj−1)

P(Yj−1, Yj)(c(Yj−1, Yj) + µ(Yj ))

=
τ∑

i=1

c(Yi−1, Yi )
i∏

j=1

µ(Yj−1)

c(Yj−1, Yj) + µ(Yj )

= µ(Y0)

Unique Markov chain implementation of the zero-variance estimator.

Again, implementing it requires knowing µ(y) ∀y , the quantities we
wish to compute.

Approximation to be used.
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Zero-variance approximation

Use a heuristic approximation µ̂(·) and plug it into the zero-variance
change of measure instead of µ(·).
More efficient but also more requiring technique: learn adaptively
function µ(·), and still plug the approximation into the zero-variance
change of measure formula instead of µ(·).

◮ Adaptive Monte Carlo (AMC) proceeds iteratively.
⋆ Considers several steps and ni independent simulation replications at

step i .
⋆ At step i , replaces µ(x) by a guess µ(i)(x)
⋆ use probabilities

P̃
(i)
y,z =

Py,z (cy,z + µ(i)(z))
P

w
Py,w (cy,w + µ(i)(w))

.

⋆ Gives a new estimation µ(i+1)(y) of µ(y), from which a new transition
matrix P̃(i+1) is defined.
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Adaptive stochastic approximation (ASA)
ASA just uses a single sample path (y0, . . . , yn).
Initial distribution for y0, matrix P̃(0) and guess µ(0)(·).
At step j of the path, if yj 6∈ ∆,

◮ matrix P̃(j) used to generate yj+1.
◮ From yj+1, update the estimate of µ(yj ) by

µ(j+1)(yj ) = (1 − aj (yj ))µ
(j)(yj )

+ aj (yj )
h

c(yj , yj+1) + µ(j)(yj+1)
i P(yj , yj+1)

P̃(j)(yj , yj+1)
,

where {aj(y), j ≥ 0}, sequence of step sizes
◮ For δ > 0 constant,

P̃(j+1)(yj , yj+1) = max

 

P(yj , yj+1)

ˆ

c(yj , yj+1) + µ(j+1)(yj+1)
˜

µ(j+1)(yj)
, δ

!

.

◮ Otherwise µ(j+1)(y) = µ(j)(y), P̃(j+1)(y , z) = P(j)(y , z).

◮ Normalize: P(j+1)(yj , y) =
P̃(j+1)(yj , y)

P

z P̃(j+1)(yj , z)
.

If yj ∈ ∆, yj+1 generated from initial distribution, but estimations of
P(·, ·) and µ(·) kept.
Batching techniques used to get a confidence interval.
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Drawbacks of the learning techniques

You have to store vectors µ(n)(·). State-space typically very large
when we use simulation...

This limits the practical effectiveness of the method.

Other possibility:
◮ Use K basis functions µ(1)(·), . . . , µ(K)(·), and an approximation

µ(·) ≡
K∑

k=1

αkµ
(k)(·).

◮ Learn coefficients αk as in previous methods, instead of the function
itself.

◮ See also how best basis functions can be learnt, as done in dynamic
programming.
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Illustration of heuristics: birth-death process

Let P(i , i + 1) = p and P(i , i − 1) = 1 − p for 1 ≤ i ≤ B − 1, and
P(0, 1) = P(B ,B − 1) = 1.

We want to compute µ(1), probability of reaching B before coming
back to 0.

If p small, to approach µ(·), we can use

µ̂(y) = pB−y ∀y ∈ {1, . . . ,B − 1}

with µ̂(0) = 0 and µ̂(B) = 1 based on the asymptotic estimate
µ(i) = pB−i + o(pB−i ).

We can verify that the variance of this estimator is going to 0 (for
fixed sample size) as p → 0.
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Other procedure: optimization within a parametric class

No direct relation with the zero-variance change of measure.

Parametric class of IS measures depending on vector θ, {P̃θ, θ ∈ Θ}:
◮ family of densities f̃θ, or of discrete probability vectors p̃θ.

Find
θ∗ = argmaxθEθ[(h(Y )L(Y ))2].

The optimization can sometimes be performed analytically
◮ Ex: estimate µ = P[X ≥ na] for X Binomial(n, p)
◮ IS parametric family Binomial(n, θ).
◮ Twisting the parameter p to θ = a is optimal (from Large Deviations

theory).
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Adaptive learning of the best parameters

The value of θ that minimize the variance can be learned adaptively
in various ways.

ASA method can be adapted to optimize θ by stochastic
approximation.

We may replace the variance in the optimization problem by some
distance between P̃θ and the optimal d P̃

∗ = (|X |/E[|X |])dP, simpler
to optimize.

Cross-entropy technique uses the Kullback-Leibler “distance”

D(P̃∗, P̃θ) = Ẽ
∗

[
log

d P̃
∗

d P̃θ

]

= E

[ |X |
E[|X |] log

( |X |
E[|X |]dP

)]
− 1

E[|X |]E
[
|X | log d P̃θ

]
.

Determine then

max
θ∈Θ

E

[
|X | log d P̃θ

]
= max

θ∈Θ
Ẽ

[
dP

d P̃
|X | log d P̃θ

]
.

G. Rubino and B. Tuffin (INRIA) Monte Carlo & Rare Events QEST, Sept. 2009 48 / 72



Adaptive learning in Cross-Entropy (CE)

CE method applied in an iterative manner, increasing the rarity at
each step.

Start with θ0 ∈ Θ and r.v. X0 whose expectation is easier to estimate
than X .

At step i ≥ 0, ni independent simulations are performed using IS with
θi , to approximate the previous maximization (P̃ replaced by P̃θi

)

Solution of the corresponding sample average problem

θi+1 = arg max
θ∈Θ

1

ni

ni∑

j=1

|Xi (ωi ,j)| log(d P̃θ(ωi ,j))
dP

d P̃θi

(ωi ,j),

where ωi ,j represents the jth sample at step i .

Kullback-Leibler distance is convenient for the case where P̃θ is from
an exponential family, because the log and the exponential cancel.
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Splitting: general principle

Splitting is the other main rare event simulation technique.

Assume we want to compute the probability P(D) of an event D.

General idea:
◮ Decompose

D1 ⊃ · · · ⊃ Dm = D,

◮ Use P(D) = P(D1)P(D2 | D1) · · ·P(Dm | Dm−1), each conditional event
being “not rare”,

◮ Estimate each individual conditional probability by crude Monte Carlo,
i.e., without changing the laws driving the model.

◮ The final estimate is the product of individual estimates.

Question: how to do it for a stochastic process? Difficult to sample
conditionally to an intermediate event.
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Graphical interpretation

D1

D2

D3 = D
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Splitting and Markov chain {Yj ; j ≥ 0} ∈ Y
Goal: compute γ0 = P[τB < τA] with

◮ τA = inf{j > 0 : Yj−1 6∈ A and Yj ∈ A}
◮ τB = inf{j > 0 : Yj ∈ B}

Intermediate levels from importance function h : Y → R with
A = {x ∈ Y : h(x) ≤ 0} and B = {x ∈ Y : h(x) ≥ ℓ}:

◮ Partition [0, ℓ) in m subintervals with boundaries
0 = ℓ0 < ℓ1 < · · · < ℓm = ℓ.

◮ Let Tk = inf{j > 0 : h(Yj ) ≥ ℓk} and Dk = {Tk < τA}.
1st stage:

◮ simulate N0 chains until min(τA, T1).
◮ If R1 number of chains for which D1 occurs, p̂1 = R1/N0 unbiased

estimator of p1 = P(D1).

Stage 1 < k ≤ m:

◮ If Rk−1 = 0, p̂l = 0 for all l ≥ k and the algorithm stops
◮ Otherwise, start Nk chains from these Rk entrance states, by

potentially cloning (splitting) some chains
◮ simulate these chains up to min(τA, Tk).
◮ p̂k = Rk/Nk−1 unbiased estimator of pk = P(Dk |Dk−1)
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Two-dimensional illustration

A3

0

A1

B=A4

A2

G. Rubino and B. Tuffin (INRIA) Monte Carlo & Rare Events QEST, Sept. 2009 54 / 72



The different implementations

Fixed splitting:
◮ clone each of the Rk chains reaching level k in ck copies, for a fixed

positive integer ck .
◮ Nk = ckRk is random.

Fixed effort:
◮ Nk fixed a priori
◮ random assignment draws the Nk starting states at random, with

replacement, from the Rk available states.
◮ fixed assignment, on the other hand, we would split each of the Rk

states approximately the same number of times.
◮ Fixed assignment gives a smaller variance than random assignment

because it amounts to using stratified sampling over the empirical
distribution Gk at level k .

Fixed splitting can be implemented in a depth-first way, recursively,
while fixed effort cannot.

On the other hand, you have no randomness (less variance) in the
number of chains with fixed effort.
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Diminishing the computational effort

As k increases, it is likely that the average time before reaching the
next level or going back to A increases significantly.

We can kill (truncate) trajectories hat go a given number β of levels
down (unlikely to come back), but biased.

Unbiased solution: apply the Russian roulette principle
◮ kill the trajectory going down with a probability rβ . If it survives, assign

a multiplicative weight 1/(1 − rβ).
◮ Several possible implementations to reduce the variance due to the

introduction of weights.
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Issues to be solved

How to define the importance function h?
◮ If the state space is one-dimensional and included in R, the final time is

an almost surely finite stopping time and the critical region is
B = [b,∞), any strictly increasing function would be good (otherwise
a mapping can be constructed, by just moving the levels), such as for
instance h(x) = x .

◮ If the state space is multidimensional: the importance function is a
one-dimensional projection of the state space.

◮ Desirable property: the probability to reach the next level should be the
same, whatever the entrance state in the current level.

◮ Ideally, h(x) = P[τB ≤ τA | X (0) = x ], but as in IS, they are a
probabilities we are looking for.

◮ This h(·) can also be learnt or estimated a priori, with a presimulation,
by partitionning the state space and assuming it constant on each
region.
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Issues to be solved (2)

How many offsprings at each level?
◮ In fixed splitting:

⋆ if ck < 1/pk , we do not split enough, it will become unlikely to reach
the next event;

⋆ if ck > 1/pk , the number of trajectories will exponentially explode with
the number of levels.

⋆ The right amount is ck = 1/pk (ck can be randomized to reach that
value if not an integer).

◮ In fixed effort, no explosion is possible.
◮ In both cases, the right amount has to be found.

How many levels to define?

◮ i.e., what probability to reach the next level?
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Optimal values

In a general setting, very few results exist:
◮ We only have a central limit theorem based on genetic type interacting

particle systems, as the sample increases.
◮ Nothing exist on the definition of optimal number of levels...

Consider the simplified setting, with a single entrance state at each
level.

Similar to coin–flipping to see if next level is reached or not.

In that case, asymptotically optimal results can be derived, providing
hints of values to be used.
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Simplified setting and fixed effort

N0 = N1 = · · · = Nm−1 = n

The p̂k ’s binomial r.v. with parameters n and pk = p = µ
1/m
0

assumed independent.
It can be shown that

Var[p̂1 · · · p̂m] =
m

Y

k=1

E[p̂2
k ] − γ2

0 =

„

p
2 +

p(1 − p)

n

«m

− p
2m

=
mp2m−1(1 − p)

n
+ · · · +

(p(1 − p))m

nm
.

Assuming n ≫ (m − 1)(1 − p)/p,

Var[p̂1 · · · p̂m] ≈ mp2m−1(1 − p)/n ≈ mγ
2−1/m
0 /n.

The work normalized variance ≈ [γn
0m2]/n = γ

2−1/m
0 m2

Minimized at m = − ln(γ0)/2

This gives pm = γ0 = e−2m, so p = e−2.

But the relative error and its work-normalized version both increase
toward infinity at a logarithmic rate.

There is no asymptotic optimality either.
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Simplified setting: fixed splitting

N0 = n, pk = p = γ
1/m
0 for all k, and c = 1/p; i.e., Nk = Rk/p.

The process {Nk , k ≥ 1} is a branching process.

From standard branching process theory

Var[p̂1 · · · p̂m] = m(1 − p)p2m−1/n.

If p fixed and m → ∞, the squared relative error m(1 − p)/(np) is
unbounded,

But it is asymptotically efficient:

lim
γ0→0+

log(E[γ̃2
n ])

log γ0
= lim

γ0→0+

log(m(1 − p)γ2
0/(np) + γ2

0)

log γ0
= 2.

Fixed splitting is asymptotically better, but it is more sensitive to the
values used.
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Illustrative simple example: a tandem queue

Illustrative of the impact of the importance function.

Two queues in tandem
◮ arrival rate at the first queue is λ = 1
◮ mean service time is ρ1 = 1/4, ρ2 = 1/2.
◮ Embedded DTMC: Y = (Yj , j ≥ 0) with Yj = (Y1,j , Y2,j) number of

customers in each queue after the jth event
◮ B = {(x1, x2) : x2 ≥ L = 30}, A = {(0, 0)}.

Goal: impact of the choice of the importance function?

Importance functions:

h1(x1, x2) = x2,

h2(x1, x2) = (x2 + min(0, x2 + x1 − L))/2,

h3(x1, x2) = x2 + min(x1, L − x2 − 1) × (1 − x2/L).
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Illustration, fixed effort: a tandem queue (2)

VN : variance per chain, (N times the variance of the estimator) and the
work-normalized variance per chain, WN = SNVN , where SN is the expected
total number of simulated steps of the N Markov chains.

With h1, V̂N and ŴN were significantly higher than for h2 and h3.

Estimators rescaled as ṼN = 1018 × V̂N and W̃N = 1015 × ŴN .

N = 210 N = 212 N = 214 N = 216

ṼN W̃N ṼN W̃N ṼN W̃N ṼN W̃N

h2, Splitting 109 120 89 98 124 137 113 125
h2, Rus. Roul. 178 67 99 37 119 45 123 47

h3, Splitting 93 103 110 121 93 102 107 118
h3, Rus. Roul. 90 34 93 35 94 36 109 41
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Confidence interval issues

Robustness is an issue, but what about the confidence interval
validity?

If the rare event has not occured: empirical confidence interval is
(0, 0).

The problem can even be more underhand: it may happen that the
rare event happens due to some trajectories, but other important
trajectories important for the variance estimation are still rare and not
sampled: the empirical confidence confidence interval is not good
then.
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Illustrative example of the difficulty

2, 2

2, 1 1, 2

1, 1

0

1
1 ε

1

ε
1/2 ε2

1/2

ε2ε2

ε

4-component system with two classes of components, subject to
failures and repairs. Discrete time Markov Chain
µ probability starting from (2, 2) to we reach a down state before
coming back to (2, 2).
µ = 2ε2 + o(ε2) (two dominant paths).G. Rubino and B. Tuffin (INRIA) Monte Carlo & Rare Events QEST, Sept. 2009 66 / 72



IS probability used

Failure Biasing scheme: for each up state 6= (2, 2), we increase the
probability of failure to the constant q (ex: 0.8) and use individual
probabilities proportional to the original ones.

2, 2

2, 1 1, 2

1, 1

0

1

1 − q
ε

1 − q

q

(1 − q)/2
q/2

(1 − q)/2

q/2qε

q
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Empirical evaluation as ǫ → 0

Fix the number of samples, n = 104, using the same pseudo-random
number generator, and varying ε from 10−2 down to 0.

Remember that µ = 2ǫ2 + o(ǫ2) and σ2
IS = Θ(ǫ3).

ǫ 2ǫ2 Est. Confidence Interval Est. RE

1e-02 2e-04 2.03e-04 ( 1.811e-04 , 2.249e-04 ) 1.08e-01

1e-03 2e-06 2.37e-06 ( 1.561e-06 , 3.186e-06 ) 3.42e-01

2e-04 8e-08 6.48e-08 ( 1.579e-08 , 1.138e-07 ) 7.56e-01

1e-04 2e-08 9.95e-09 ( 9.801e-09 , 1.010e-08 ) 1.48e-02

1e-06 2e-12 9.95e-13 ( 9.798e-13 , 1.009e-12 ) 1.48e-02

1e-08 2e-16 9.95e-17 ( 9.798e-17 , 1.009e-16 ) 1.48e-02

The estimated value becomes bad as ǫ → 0.

It seems that BRE is verified while it is not!
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Asymptotic explanation
When ε small, transitions in Θ(ε) not sampled anymore.

Asymptotic view of the Markov chain:

2,2

2,1 1,2

1,1

0

≈1

1−q

1−q

q

(1−q)/2

q/2

(1−q)/2

q/2

q
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Asymptotic explanation (2)

For this system:
◮ the expectation is ǫ2 + o(ǫ2)

◮ variance 1−q2

nq2 ε4 + o(ǫ4).

Results in accordance to the numerical values, and BRE is obtained.

But does not correspond to the initial system, with different values.

Reason: important paths are still rare under this IS scheme.

Diagnostic procedures can be imagined.
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Some applications

HRMS (Highly Reliable Markovian Systems): IS examples

STATIC MODELS (Network Reliability):
◮ a recursive variance reduction technique
◮ reducing time instead of variance
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