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Abstract

In this paper we present an approach to characterise, in an approximate but very
accurate fashion, the output process of a MAP|MAP|1 queue as a MAP. In our
approximations, the interdeparture time distribution is correctly represented; the
correlation structure is approximated to any required degree of accuracy. We derive
our approximations directly from the queueing process itself. Various case studies
show the feasability and accuracy of our approach.

By combining our results with the exact results that are available to merge and
split MAPs, we have established all ingredients for a decomposition procedure for
open networks of MAP|MAP|1 queues. In a separate paper we will report on the
details of such a procedure.

1 Introduction

Efficient and exact algorithms for the evaluation of open queueing network models only
exist when the considered models are of a very simple class. Best-known in this context are
Jackson queueing networks [7], in which the service and interarrival time distributions are
negative exponential, and in which the routing is fixed and Markovian. A decomposition
via the solution of the (first-order) traffic equations then naturally leads to the study of
single queues at a time. However, to model modern network systems, more realistic packet
(“job”) arrival streams have to be coped with, as well as non-exponential service times.
In such cases, the decomposition using the traffic equations becomes more complex and,
in fact, only possible in an approximate way. Early work in this area, that is, for the
approximate analysis of open networks of G|G|1 queues, has been reported by Kiihn [§]
and Whitt [17, 16]. An extension ot this approach has been developed by Haverkort et
al. [3, 14] in which the service and interarrival time distributions are of phase-type and in
which the individual queues are analysed using matrix-gemeotric methods. This is possible
due to the quasi-birth-death structure of the resulting per-queue underlying Markov chains.
Note that in the latter approach, also finite-buffer queues can be handled.

In this paper, we take the previous analyses a step further. In particular, we at-
tempt to study networks of MAP|MAP|1 queues, that is, networks of queues in which
both the service and arrival processes are non-renewal and described as Markovian arrival
processes (MAPs; see Section 2). The motivation for this choice is the fact that complex
arrival patterns, for instance those appearing in the Internet, can best be described using



MAPs. Furthermore, also complex services that may depend upon one another can also
be described using MAPs. Attempts to approximate the non-renewal service and arrival
processes with renewal processes often lead to inaccurate analysis results. In order to still
study networks of such queues, we have to characterise the output process of MAP|MAP|1
queues, in order to use these as input processes for queues further downstream in the
queueing network. Unfortunately, the output process of a MAP|MAP|1 queue is not a
finite MAP. Hence, the aim of this paper is to construct approximate representations of
the output process of MAP|MAP|1 queues that are still finite MAPs. If we succeed in this,
we can develop a decomposition approach as has been done in [3, 14], but now in an more
general, non-renewal context.

The problem we are addressing in this paper is not new and has been recognised by
authors as well. Recently, Green et al. [2] analysed the output process of MAP|PH|1
queues; also in their case, the output process is not a finite MAP. Heindl recently proposed
to approximate the output process of an MMPP|G|1[| K| queueing systems using a semi-
Markov process [4], to be used for the analysis of tandem queueing networks. In this paper
we extend the approach of Green et al. in that we consider MAPs as service processes,
and in that we allow for more freedom in the process of making the infinite MAP finite.
We compare our results with the approach based on renewal processes (as advocated in
[3, 14]), as well as with discrete-event simulations. Early results of our implementation are
promising.

The paper is further organised as follows. In Section 2 we introduce MAPs and discuss
the most important properties of such processes. Section 3 then presents the analysis of
the MAP|MAP|1 queue, thereby focussing on the exact departure process, as well as on
the families of departure process approximations. In Section 4 we then present evaluation
results and comparisons to discrete-event simulations. Section 5 concludes the paper.

2 The Markovian arrival process

We first consider MAPs in Section 2.1. Then, we discuss their interarrival time character-
istic in Section 2.2 and their joining and splitting in Section 2.3.

2.1 Definition

MAPs are stochastic processes where the interarrival times are controlled by a continuous-
time Markov chain with marked transitions. Such a CTMC has an infinitesimal generator
matrix Q which is splitted into two matrices Qg and Q; as follows:
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with Q = Qo + Qq and ¢ = X7° ;4;(gi; + ai;). The elements of the matrix Qq give
the transition rates of the marked transitions: passing through such a marked transition
triggers an arrival event. Some general results of the Markov-modulated Poisson process
(MMPP) [15] can be easily adapted to the MAP. In the following we will state the most
important ones.



2.2 Interarrival time characteristics

In order to compute the behaviour of a MAP (Qg, Q1) we first need to choose the initial
probability vector p of the MAP. In analogy to phase-type distributions we start the MAP
at an “arbitrary” arrival epoch by choosing

where 7 is the steady state probability vector of the MAP, i.e., m(Qo+ Q1) = 0. The thus-
obtained process is said to be interval-stationary [15]. The interarrival time distribution
function of the interval-stationary process is given by

F(t) =1 — pexp(Qot)e,

which leads to the following expression for the kth moment of the interarrival time [15]:
E[T*] = klp(~Qo)~**"Que.

Let T; be the time between the ith and the (i + 1)st arrivals in a MAP. Then, the autoco-
variance function R(k) for T; and Ty with k£ > 1 is given by

R(k) = E[(Ti — E[TA])(Tk+1 — E[T+1])]
= p(—Qo)’Q: {[(—Qo)_lQ1]kl — Q]_?} (—Qo) *Que.

The limiting index of dispersion I of a MAP is given by [4]
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where N (t) is the counting process of the MAP.

2.3 Joining and splitting

The class of MAPs is closed under joining and probabilistic splitting. The superposition
of two MAPs (Ag, A;) and (Bg, B;) is a new MAP (Cy, Cy) with

Co=A¢®By, C;=A;0By,

where LOM =L ®I+1® M, and ® is the tensor product operator.
The probabilistic splitting of a MAP (Ao, A;) with probability r gives two MAPs
(Bo,Bl) and (Co, Cl) with

(Bo,Bl) = (A0+(1—T’)A1,7’A1),
(CO,C]_) = (A0+7'A1,(1—7‘)A1).

3 The MAP/MAP|1 queue

We first present the CTMC underlying a MAP|MAP|1 queue in Section 3.1, after which
we discuss the departure process of such a queue in detail in Section 3.2.



3.1 The underlying Markov chain

In a MAP|MAP|1 queue both the arrival process and the service process are MAPs. The
underlying infinite Markov chain of such a queue can be considered as a special case
of a quasi-birth-and-death process (QBD) [10] where each level of the QBD state space
corresponds to a specific number of customers in the queueing system.

Let (Ag, A1) be the arrival MAP with [ states and (Sg, S1) the service MAP with m
states. Then the underlying QBD has the following generator matrix

B: A; Ay
Q= 0o a, A, |> (1)
with
By = Ao®I,
B, = I®S,,
AO - Al ® I,
A, = Ag®Sy,
A2 - I ® S]_.

The steady-state probability vector 7 has the following structure

r=(w w ),

where each v; is a vector of size [ - m and contains the steady-state probabilities for the
states of level 7 in the QBD. In the following, we assume that matrix-geometric solution
methods, like the LR-approach [1], are used to compute m. Matrix-geometric solution
methods are based on the fact that the vectors v; have the so-called matrix-geometric form

v; =R, ReR™m =01,...,
where R is the entry-wise smallest non-negative solution of the matrix-quadratic equation
Ag+RA; +R?A, =0.

Having obtained 7, many performance measures of the queue can be computed easily, e.g.,
the moments of the queue length distribution:
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which yields, in case k = 1:
E[N] = 5R(I-R) Ze.
3.2 The departure process and its approximations

We present the exact departure process in Section 3.2.1 and present a simple and a more
complex approximation in Section 3.2.2 and 3.2.3, respectively.



3.2.1 The infinite departure process

When analysing the departure process of a queue one generally is interested in a descrip-
tion that is of the same class as the description of the arrival process, since then one is able
to analyse networks of queues by simply feeding the output of a queue as input for the
subsequent queue after the splitting and joining of traffic streams has been handeld. How-
ever, in general, queues with infinite buffer produce departure processes with an infinite
structure.

In the case of MAP|MAP|1 queues, the output process is an infinite MAP (Dg, D;)
which can easily be obtained by modifying the underlying Markov chain of the queue: since
each service completion corresponds to an “arrival” in the departure process we obtain Dy
and D, directly from the generator (1) by marking the transitions of the sub-matrices By
and A, as “arrival” transitions, as follows:

BO AQ 0
0 A]_ Ao B]_ 0

DO - 0 A1 ’ D1 - A2 0

This representation of the departure process is exact but —due to its infinite size— not
practical for further use, e.g., as arrival MAP for a subsequent MAP|MAP|1 queue. Hence,
our primary goal is to find a finite approximation of the departure MAP which is as small
as possible but well matches the characteristics, i.e., the interarrival time distribution and
the correlation structure, of the original MAP.

3.2.2 Simple finite approximation of the departure process

In [13], Green presented an approach to approximate the departure process of MAP|PH|1
queues by a finite MAPs. This approach can be easily extented! to MAP|MAP|1 queues.
The thus obtained MAP will have two important characteristics:

1. Tt ezactly describes the inter-departure time distribution of the original departure
process.

2. It is able to describe the correlation structure of the original departure process at
arbitrary precision albeit at the cost of an arbitrary large state space.

The second characteristic implies that, depending on the required quality of the approx-
imation, the obtained MAP may become so large that other reduction methods must be
applied afterwards.

The approximation is based on the structural equality of the infinite departure MAP
and the underlying CTMC of the QBD: each level in the QBD has its corresponding entries
in the matrices of the departure MAP. However, it often is not required to represent all
levels of the QBD in the departure process. Since the probability v;e to be in level ¢
decreases with increasing 7, there is an integer s where v,e becomes so small that one may
decide not to represent the levels s and higher in full detail in the departure process.

In the following we assume s > 1, i.e., level s is not adjacent to the border level 0.
We transform the infinite (exact) departure process into a finite (approximated) departure
process by replacing the levels s and higher by only one level, the s-called called clipping
level 5. The transition rates leaving and entering level § are computed as follows:

! Actually, we developed our approach while not being aware of [13].



e Changing to level § from level s — 1 corresponds to changing to level s from s — 1 in
the original departure process.

e Staying in level § without an arrival in the departure process corresponds to staying
in level s’ or changing from level s’ to s’ 4+ 1 (for all s' > s) in the original departure
process.

e Finally, an arrival in the original departure process from a state i in the level s’ €
{s, ...} may either lead to:

(i) level s —1 = s — 1: this corresponds to an arrival that leads from level S to
s — 1, which happens with probability

(ii) level s’ —1 # s — 1: this corresponds to an arrival that leads from level § to s,
which happens with probability

1
70 .
|Vs,i| + o] "

where v, is the steady-state probability to be in a level higher than s in the original

QBD, that is:
ve = D vi= > uR
i>s i=s+1

= ERS-F].(I — R)_l.

These considerations yield the finite appromixation MAP of the departure process:

Bo Ao
0 A; A
0 A,
DO = . . . ) and
Ao
Ao+ Ay
0
B; O
A, 0
Dl = ’ . . )
0
A2,down A2,stay
with
1
(Az,down)z'j = mvs,iAQ,ija
1
(A2,stay)ij = 7.?4,1'142,@'-



3.2.3 Extended approximation method

In the previous section we explained how the set {s,s + 1,...} of levels for given s can be
merged into one level. Certainly, this merging operation can be applied to any finite set
{s,s+1,...,t} of levels, too. All we need to know are the probabilities to be in one of the
border levels s or t of the set and the probability to be in the set {s,s + 1,...,t} which
are given by subvectors of 7. We define vs.; = 4_, v;. Replacing the levels s through ¢ in
the original departure process by one level results in the following MAP:

Bo Ao
0 Al
0 .
DO = AO ;
A1+ Agstay Aoup
0 A,
0
0
B; 0
A,
D1 — . ,
A2,down A2,stay
A,
with
1
(Aoup)i; = Vg, A0,
Vseq,i
1
(Aostay)ij = — (Vseqi — Vt,i)A0sis)
VUseq,i
1
(Azstay)ij = —(Vseqi — s,i)Az,ijy
Vseq,i
1
(A2,down)ij = —US,iA27ij'
Useq,i

Combined with the method of the previous section we are able to create finite approxi-
mations of the departure process whose quality and size can be controlled in many ways
by choosing the number and the position of the here described compacting operations.
It should be noted that this approach, as well as the approach presented in the previous
section, always yields a MAP with exactly the same interarrival distribution as the original
departure process.

4 Evaluation of the approximation methods

In Section 4.1 we evaluate our approach when used with renewal external arrivals, whereas
we apply non-renewal arrival processes in Section 4.2. We study effects of queue utilisation
in Section 4.3.
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Figure 1: Complementary distribution function (cF) of the queue length (Case 1)

4.1 Case 1: renewal input processes
The queueing system studied

We start our evaluation with the analysis of a simple MAP|MAP|1 queue using an Erlang-
2 service process with service rate 1.9. The queue is fed by a hyper-exponential renewal
process with MAP representation

—3.39 0 3.19 0.2
0 —-0.21 /7\ 0.2 0.01 '

The arrival rate and coefficient of variation are 1.8, respectively 8.0. When analysing this
queue we can see that the high load of nearly 95% and the high variance of the input
process lead to a high mean queue length of 73.11 with the corresponding slowly decaying
queue length distribution function (Figure 1).

Characteristics of the approximated departure process

First, we investigate the departure process approximated by the simple approximation
method presented in Section 3.2.2. How does the quality of the approximation depend
on the choice of the clipping level? In view of the remarks made about the queue length
distribution it is clear that a high clipping level is required to preserve the characteristics
of the original departure process. To illustrate this, we have computed the approximated
departure process for four different clipping levels, namely 17, 33, 49 and 65. For these
cases, the autocovariance functions R(k), as defined in Section 2.2, are shown in Figure 2.
Choosing 33 as clipping level seems to result in a good approximation to the autocovariance
function of the exact departure process (which has not been shown here because it nearly
is equal to the 65-approximation).

These results show that even MAPs with low clipping level can give a good approxima-
tion of the correlation structure at small time lags k. For the approximation of correlation
at large time lags, MAPs must be choosen which respect the structure of the higher levels
of the queue QBD. Figure 2 shows that the autocovariance function of MAPs with low
clipping level quickly drops to 0 (i.e., to the behaviour of uncorrelated renewal processes)
with increasing time lag. However, the figure additionally shows that clipping levels which
are considerably smaller than the mean queue length yield good approximations to the
exact departure process. This may be surprising since clipping levels like 65 only catch
55% of the queue length distribution probability (Figure 1). But we should note that many
important characteristics of queue processes, like the busy period, are mainly represented
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Figure 2: Autocovariance function R(k) of the approximate departure MAP for clipping
levels 17, 33, 49 and 65 (Case 1)
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Figure 3: Autocovariance function R(k) of the 2-64-level MAP (Case 1)

by the lower levels. In fact, Green proved for MAP|PH|1 queues in [2] that the k-level
approximation captures the first £ — 1 correlation coefficients of the departure process
exactly.

As next step, we use the fact that high clipping levels lead to increased correlation
for large time lags by introducing the approximation method presented in Section 3.2.3.
To evaluate its impact, we choose the 33-level MAP as reference. It is of moderate size
(134 states; which can be easily handled computationally) and is a good approximation to
the exact solution. We now compare the 33-level MAP with a MAP of the same size but
constructed as follows: (i) levels 0 and 1 are modelled without approximation, (ii) levels
2 through 63 are merged two by two, and (iii) the levels beyond 63 are merged into one
level. This MAP (called 2-64-level MAP) is compared with the 33-level and the 65-level
MAP in Figure 3. For k£ > 110 this MAP better approximates the exact solution as the
33-level MAP. However for £ < 110 its autocovariance is apparently lower than the 33-level
solution: since the 2-64-level MAP approximates the levels from 2 through 63 two by two
it gives a worse description of correlation between subsequent queue departure.

Even slightly better approximations can be obtained by using more complex level
schemes, e.g., a 4-40-84-level MAP with the following structure: (i) levels 0 through 3
are modelled exactly, (ii) levels 4 through 39 are merged two by two and (iii) levels 40
through 83 are merged four by four (clipping level is 84). Figure 4 shows this MAP in
comparision with the other approximations.
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Figure 4: Autocovariance function R(k) of the 4-40-84-level MAP (case 1)

E[N] RE

Simulation | 22.2 + 1.4
FiFiQueues 16.3  26.6%
33 19.8 10.8%
2-64 20.8 6.4%
4-40-84 21.0  5.4%
46 21.0  5.4%

Table 1: Mean queue length for different approximations (Case 1)

Analysis results of MAP|MAP|1 tandem queues

In the previous section we have presented and compared different approximations to the
output process of an MAP|MAP|1 queue. These approximations have the same interar-
rival time distribution but differ in higher order statistics as the autocovariance. It is well
known that the presence of autocorrelation in arrival processes heavily impacts the perfor-
mance measures of queueing systems [12]. Hence, in this section, we will examine how the
different approximations affect the performance of a subsequent second queue which takes
the (approximated) departure process of the first queue as arrival process.

As for the first queue, we choose for this queue as service process an Erlang-2 process
with service rate 1.9. Table 1 shows the mean value of its queue length as a function of the
chosen approximated departure process. The first row also presents the 95% confidence
interval produced by simulation. The second row states the results computed by the
queueing analysis tool FiFiQueues [14] which approximates queue departure processes by
renewal processes. The remaining rows show the results obtained with the new method
and compares them with the simulation. The relative error (RE) stated in the table is
defined as

simulation — approximation

-100%.

simulation
As reported in other publications, these cases shows that increased correlation leads to
higher mean queue lengths. This can be explained in a quite intuitive manner by looking
at the power spectrum (see also Appendix A) of the discrete function f(k) = T}, where T} is
the interarrival time as defined in Section 2.2. In Figure 5, we show the power spectrum for
clipping levels 2, 6 and 11; we see that low-frequency energy, i.e., around w = 0, increases
with the clipping level. This is an important fact, since San-qi Li has shown in [9] that
input power in the low-frequency band has a dominent impact on queueing performance.
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Figure 5: The power spectrum of MAPs for three different clipping levels

E[N] RE

Simulation | 27.7 £+ 2.3
FiFiQueues 241 13.0%
33 264  4.7%
4-40-84 274 1.1%

Table 2: Mean queue length for different approximations (Case 2; Poisson arrivals)

Low frequencies produce long periods of increased workload entering the queue [12].

This example also shows that better approximations do not necessarily require more
states, as becomes clear from the last row: a 4-40-84-level MAP with 1384 states produces
the same mean queue length as a 46-level MAP with 186 states. This is an significant
improvement since the complexity of MAP|MAP|1 queue analysis cubically depends on
the number of states in the MAP describing the arrival process. It seems that the good
modelling of correlation for large time lags, as provided by the 4-40-84-level MAP, is more
important than for small time lags. This observation confirms the results of studies made
in the area of self-similar traffic which report that correlation over many time scales may
noticeably affect the performance of queueing systems [11].

4.2 Case 2: true Markovian arrival processes

In this second case, we show that comparably good results (as before) are obtained with
true Markovian arrival processes. The queueing system under study remains unchanged
(two queues with Erlang-2 service and service rate 1.9). For the sake of compactness we
present only the results of the tandem system analysis; the results for the departure process
per se are as good as before.

Table 2 shows the mean queue length at the second queue, obtained by feeding a Poisson
process with arrival rate 1.86 into the first queue. The mean queue length of the first queue
is 35.1. Again, our results are rather good.

Our next arrival process is the superposition of an hyper-exponential renewal process
with arrival rate 1.4 and squared coeflicient of variation 8.0 with an Erlang-2 process with
arrival rate 0.4. The thus-obtained process has the following characteristics:

arrival rate = 1.8,
2 = 22

Since this process is not a renewal process, its limiting index of dispersion for counts



E[N] RE
Simulation | 20.2 4 2.0

33 18.9 6.4%
2-64 19.2 4.9%
4-40-84 19.4 4.0%

Table 3: Mean queue length for different approximations (Case 2; non-renewal arrivals)

[w=1.9]| [u=17]

E[N] E[N]

Simulation 7.4 45.0
22 7.16 38.6

2-42 7.09 39.2

Table 4: Mean queue length for different arrival processes (Case 3)

considerably differs from its squared coefficient of variation: I = 6.3. The mean queue
length of the first queue is 58.2. The results for the mean queue length of the second queue
are shown in Table 3. The confidence interval for the simulation result is +2 with 95%
confidence level. Although slightly worse as before, the results are still acceptable.

4.3 Case 3: different load scenarios

Finally, we present a scenario for which the more complex departure process approximation
does not improve the simple clipping-level approximation. We take the same tandem
queueing system as in Case 1, but lower the arrival intensity to 1.6. This results in a mean
queue length of 19.3 for the first queue. The mean queue length of the second queue is
shown in Table 4, in case the service rate 4 = 1.9 (middle column) or 1.7 (right column).

Here, we can find an interesting fact: the last two rows in the middle column (Case
p = 1.9) show that the 2-42-level approximation provides worse results than the 22-level
approximation. Apperantly, this effect is not present for p = 1.7 (right column). This
may be explained by the fact that for y = 1.9 the queue runs with a substantially lower
load than in all other experiments presented in this paper. This seems to lead to a lower
sensitivity to long-time correlation and the 2-42-level MAP loses its advantage against the
22-level approximation. However, more investigations are needed here, to make this more
firm.

5 Conclusion

In this paper we have presented an approach to characterise, in an approximate but very
accurate fashion, the output process of a MAP|MAP|1 queue as a MAP. In any case,
the interarrival time distribution is correctly represented; the correlation structure is ap-
proximated to any required degree of accuracy. By combining this result with the exact
results that are available to merge and split MAPs, we have established all ingredients
for a decomposition procedure for open networks of MAP|MAP|1 queues. In a separate
paper we will report on that; most probably we will incorporate the new technique in the
FiFiQueues tool [14]. It should be noted at this point, that the MAP respresentations of



the traffic streams may become rather large, especially in case we allow for feedback loops
in the queueing network. We will then have to use algorithms to reduce the size of the
MAPs. We are currently investigating the use of Markovian bisimulation algorithms [5, 6]
to perform such reductions; early results are promising.
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A The power spectrum of a MAP

The power spectrum of the discrete process 717,75, . .. is the Fourier transform of the non-
centralized autocovariance function V(k) = E[X;Xgy1]- In the spcial case of a MAP

(Q07 Q1)7 we have:
V(k) == E{Xle+1}
= p(—Qo)’Qu [(—Q0)71Q1}k71 (—Qo) *Que
For V(0) we find:
V(0) = E[X7] = 2p(— Qo) *Que.
The Fourier transform ®(w) is given by:

P(w) = i V(k)e ™k,

k=—o0
Since the process is weakly stationary, we have V(—k) = V(k), which leads to
dw) = V(0)+ D V(k)(“r +e™“F)
k=1

= V(0)+20- Y [(-Qo) Qi) cos(wh) - G, 2)

M8

k=1

where C; = p(—Qo)2Q and C = (—Qo) 2Que. Using the eigenvectors and eigenvalues
of the matrix (—Qo 'Q1, a closed-form solution for ®(w) can be obtained.



