
Infinite-State Verification: From Transition Systems to
Markov Chains

Parosh Aziz Abdulla

Uppsala University

September 13, 2009

(Joint work with Noomene Ben Henda, Richard Mayr, and Sven Sandberg)

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 1 / 27

Outline

1 Infinite-State Transition Systems
2 VASS

Model
Ordering
Coverability
Backward Reachability Analysis
Finite Spanning

3 Infinite-State Markov Chains
4 Decisive Markov Chains

Definition
Sufficient Conditions
Coarseness
Probabilistic VASS
Attractors
Probabilistic Lossy Channel Systems

5 Qualitative Reachability Analysis
6 Qualitative Repeated Reachability Analysis
7 Approximate Quantitative Reachability Analysis
8 Game Probabilistic Lossy Channel Systems

Model
Algorithm

9 Conclusions and Future Work

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 2 / 27

Infinite-State Transition Systems

Infinite-State Transition Systems

Infinite-State Transition Systems

{C ,−→}
C: (potentially infinite) set of configurations

−→: transition relation

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 3 / 27

Infinite-State Transition Systems

Reachability

Init

F

Repeated Reachability

Init

F

Infinite-State Transition Systems

VASS Model

Vector Addition Systems with States (VASS)
Model

q1 q2

q3q4

x+ z+

x-

y+

z+
y -

x-

x+ z+

y -
y+

z+

weak counters: can be incremented or decremented

equivalent to Petri nets

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 4 / 27

VASS Model

Vector Addition Systems with States (VASS)
Model

q1 q2

q3q4

x+ z+

x-

y+

z+
y -

x-

x+ z+

y -
y+

z+

Configuration

c = q1(2, 0, 4)

infinitely many configurations

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 5 / 27

VASS Model

Vector Addition Systems with States (VASS)
Model

q1 q2

q3q4

x+ z+

x-

y+

z+
y -

x-

x+ z+

y -
y+

z+

Configuration

c = q1(2, 0, 4)
infinitely many configurations

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 5 / 27

VASS Model

Vector Addition Systems with States (VASS)
Model

q1 q2

q3q4

x+ z+

x-

y+

z+
y -

x-

x+ z+

y -
y+

z+

Computation

q1(2, 0, 4) −→ q2(3, 0, 5) −→ q3(3, 1, 6) −→ q2(3, 0, 6) −→ · · ·

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 6 / 27

VASS Ordering

Vector Addition Systems with States (VASS)
Ordering

Ordering

q(x , y , z) ≤ q′(x ′, y ′, z ′) iff

q = q′.
x ≤ x ′, y ≤ y ′, z ≤ z ′.

Examples

q1(2, 0, 3) ≤ q1(4, 1, 3)

q1(2, 0, 3) 6≤ q1(1, 6, 3)

q1(2, 0, 3) 6≤ q2(5, 6, 3)

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 7 / 27

VASS Ordering

Vector Addition Systems with States (VASS)
Ordering

Ordering

q(x , y , z) ≤ q′(x ′, y ′, z ′) iff

q = q′.
x ≤ x ′, y ≤ y ′, z ≤ z ′.

Examples

q1(2, 0, 3) ≤ q1(4, 1, 3)

q1(2, 0, 3) 6≤ q1(1, 6, 3)

q1(2, 0, 3) 6≤ q2(5, 6, 3)

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 7 / 27

VASS Ordering

Vector Addition Systems with States (VASS)
Ordering

Upward Closed Sets

(c ∈ U) ∧ (c ≤ c ′) =⇒ (c ′ ∈ U)

Upward Closure

c↑:= {c ′|c ≤ c ′}
q1(2, 0, 3)↑= {q1(2, 0, 3), q1(3, 0, 3), q1(2, 0, 4), q1(3, 2, 6), . . .}
q1(0, 0, 0)↑= {q1(0, 0, 0), q1(1, 0, 0), q1(0, 1, 0), q1(3, 2, 6), . . .}

Minimal Elements

min(U) := minimal elements of U wrt. ≤.

Properties:

min(U) is finite
min(U)↑ = U.

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 8 / 27

VASS Ordering

Vector Addition Systems with States (VASS)
Ordering

Upward Closed Sets

(c ∈ U) ∧ (c ≤ c ′) =⇒ (c ′ ∈ U)

Upward Closure

c↑:= {c ′|c ≤ c ′}
q1(2, 0, 3)↑= {q1(2, 0, 3), q1(3, 0, 3), q1(2, 0, 4), q1(3, 2, 6), . . .}
q1(0, 0, 0)↑= {q1(0, 0, 0), q1(1, 0, 0), q1(0, 1, 0), q1(3, 2, 6), . . .}

Minimal Elements

min(U) := minimal elements of U wrt. ≤.

Properties:

min(U) is finite
min(U)↑ = U.

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 8 / 27

VASS Ordering

Vector Addition Systems with States (VASS)
Ordering

Upward Closed Sets

(c ∈ U) ∧ (c ≤ c ′) =⇒ (c ′ ∈ U)

Upward Closure

c↑:= {c ′|c ≤ c ′}
q1(2, 0, 3)↑= {q1(2, 0, 3), q1(3, 0, 3), q1(2, 0, 4), q1(3, 2, 6), . . .}
q1(0, 0, 0)↑= {q1(0, 0, 0), q1(1, 0, 0), q1(0, 1, 0), q1(3, 2, 6), . . .}

Minimal Elements

min(U) := minimal elements of U wrt. ≤.

Properties:

min(U) is finite
min(U)↑ = U.

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 8 / 27

VASS Ordering

Vector Addition Systems with States (VASS)
Ordering

Upward Closed Sets

(c ∈ U) ∧ (c ≤ c ′) =⇒ (c ′ ∈ U)

Upward Closure

c↑:= {c ′|c ≤ c ′}
q1(2, 0, 3)↑= {q1(2, 0, 3), q1(3, 0, 3), q1(2, 0, 4), q1(3, 2, 6), . . .}
q1(0, 0, 0)↑= {q1(0, 0, 0), q1(1, 0, 0), q1(0, 1, 0), q1(3, 2, 6), . . .}

Minimal Elements

min(U) := minimal elements of U wrt. ≤.

Properties:

min(U) is finite
min(U)↑ = U.

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 8 / 27

VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

Computation

q1(2, 0, 4) −→ q2(3, 0, 5) −→ q3(3, 1, 6) −→ q2(3, 0, 6) −→ · · ·

K -Reachability

c1
K−→ c2: c1 can reach c2 within K steps

q1(2, 0, 4)
5−→ q2(3, 0, 6)

Reachability

c1
∗−→ c2: c1 can reach c2

q1(2, 0, 4)
∗−→ q2(3, 0, 6)

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 9 / 27

VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

Computation

q1(2, 0, 4) −→ q2(3, 0, 5) −→ q3(3, 1, 6) −→ q2(3, 0, 6) −→ · · ·

K -Reachability

c1
K−→ c2: c1 can reach c2 within K steps

q1(2, 0, 4)
5−→ q2(3, 0, 6)

Reachability

c1
∗−→ c2: c1 can reach c2

q1(2, 0, 4)
∗−→ q2(3, 0, 6)

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 9 / 27

VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

Computation

q1(2, 0, 4) −→ q2(3, 0, 5) −→ q3(3, 1, 6) −→ q2(3, 0, 6) −→ · · ·

K -Reachability

c1
K−→ c2: c1 can reach c2 within K steps

q1(2, 0, 4)
5−→ q2(3, 0, 6)

Reachability

c1
∗−→ c2: c1 can reach c2

q1(2, 0, 4)
∗−→ q2(3, 0, 6)

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 9 / 27

VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

Control State Reachability

Instance:

c : configuration
q: control state

Question: c
∗−→ q(∗, ∗, ∗)?

Coverability

Instance: c1, c2: configurations

Question: c1
∗−→ c2↑?

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 10 / 27

VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

Control State Reachability

Instance:

c : configuration
q: control state

Question: c
∗−→ q(∗, ∗, ∗)?

Coverability

Instance: c1, c2: configurations

Question: c1
∗−→ c2↑?

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 10 / 27

VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

From Control State Reachability to Coverability

c
∗−→ q(∗, ∗, ∗) ?

c
∗−→ q(0, 0, 0)↑ ?

From Coverability to Control State Reachability

c
∗−→ q(2, 0, 1)↑ ?

c
∗−→ q3(∗, ∗, ∗) ?

q

q1 q2 q3
x− x− z−

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 11 / 27

VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

From Control State Reachability to Coverability

c
∗−→ q(∗, ∗, ∗) ?

c
∗−→ q(0, 0, 0)↑ ?

From Coverability to Control State Reachability

c
∗−→ q(2, 0, 1)↑ ?

c
∗−→ q3(∗, ∗, ∗) ?

q

q1 q2 q3
x− x− z−

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 11 / 27

VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

From Control State Reachability to Coverability

c
∗−→ q(∗, ∗, ∗) ?

c
∗−→ q(0, 0, 0)↑ ?

From Coverability to Control State Reachability

c
∗−→ q(2, 0, 1)↑ ?

c
∗−→ q3(∗, ∗, ∗) ?

q

q1 q2 q3
x− x− z−

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 11 / 27

VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

From Control State Reachability to Coverability

c
∗−→ q(∗, ∗, ∗) ?

c
∗−→ q(0, 0, 0)↑ ?

From Coverability to Control State Reachability

c
∗−→ q(2, 0, 1)↑ ?

c
∗−→ q3(∗, ∗, ∗) ?

q

q1 q2 q3
x− x− z−

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 11 / 27

VASS Coverability

Vector Addition Systems with States (VASS)
Coverability

From Control State Reachability to Coverability

c
∗−→ q(∗, ∗, ∗) ?

c
∗−→ q(0, 0, 0)↑ ?

From Coverability to Control State Reachability

c
∗−→ q(2, 0, 1)↑ ?

c
∗−→ q3(∗, ∗, ∗) ?

q q1 q2 q3
x− x− z−

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 11 / 27

VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

Monotonicity

c1 c2≤

c3

c4

≤

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 12 / 27

VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

Monotonicity

c1 c2≤

c3 c4

≤

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 12 / 27

VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

qx+ y - z- x- y+ z+

(2, 0, 0)

(1, 1, 1)

(3, 0, 0)

(0, 2, 2)

(2, 0, 0)

(0, 3, 3)

(1, 1, 1)

By monotonicity

if c
∗−→ (2, 0, 0)↑ then c

2−→ (2, 0, 0)↑

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 13 / 27

VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

qx+ y - z- x- y+ z+

(2, 0, 0)

(1, 1, 1)

(3, 0, 0)

(0, 2, 2)

(2, 0, 0)

(0, 3, 3)

(1, 1, 1)

By monotonicity

if c
∗−→ (2, 0, 0)↑ then c

2−→ (2, 0, 0)↑

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 13 / 27

VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

qx+ y - z- x- y+ z+

(2, 0, 0)

(1, 1, 1)

(3, 0, 0)

(0, 2, 2)

(2, 0, 0)

(0, 3, 3)

(1, 1, 1)

By monotonicity

if c
∗−→ (2, 0, 0)↑ then c

2−→ (2, 0, 0)↑

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 13 / 27

VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

qx+ y - z- x- y+ z+

(2, 0, 0)

(1, 1, 1)

(3, 0, 0)

(0, 2, 2)

(2, 0, 0)

(0, 3, 3)

(1, 1, 1)

By monotonicity

if c
∗−→ (2, 0, 0)↑ then c

2−→ (2, 0, 0)↑

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 13 / 27

VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

qx+ y - z- x- y+ z+

(2, 0, 0)

(1, 1, 1)

(3, 0, 0)

(0, 2, 2)

(2, 0, 0)

(0, 3, 3)

(1, 1, 1)

By monotonicity

if c
∗−→ (2, 0, 0)↑ then c

2−→ (2, 0, 0)↑

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 13 / 27

VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

qx+ y - z- x- y+ z+

(2, 0, 0)

(1, 1, 1)

(3, 0, 0)

(0, 2, 2)

(2, 0, 0)

(0, 3, 3)

(1, 1, 1)

By monotonicity

if c
∗−→ (2, 0, 0)↑ then c

2−→ (2, 0, 0)↑

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 13 / 27

VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

qx+ y - z- x- y+ z+

(2, 0, 0)

(1, 1, 1)

(3, 0, 0)

(0, 2, 2)

(2, 0, 0)

(0, 3, 3)

(1, 1, 1)

By monotonicity

if c
∗−→ (2, 0, 0)↑ then c

2−→ (2, 0, 0)↑

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 13 / 27

VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

qx+ y - z- x- y+ z+

(2, 0, 0)

(1, 1, 1)

(3, 0, 0)

(0, 2, 2)

(2, 0, 0)

(0, 3, 3)

(1, 1, 1)

By monotonicity

if c
∗−→ (2, 0, 0)↑ then c

2−→ (2, 0, 0)↑

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 13 / 27

VASS Backward Reachability Analysis

Vector Addition Systems with States (VASS)
Backward Reachability Analysis

qx+ y - z- x- y+ z+

(2, 0, 0)

(1, 1, 1)

(3, 0, 0)

(0, 2, 2)

(2, 0, 0)

(0, 3, 3)

(1, 1, 1)

By monotonicity

if c
∗−→ (2, 0, 0)↑ then c

2−→ (2, 0, 0)↑
Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 13 / 27

VASS Finite Spanning

Vector Addition Systems with States (VASS)
Finite Spanning

Finitely Spanning

F : set of target states

∃K ∀c :

if c
∗−→ F then c

K−→ F

VASS

finitely spanning for upward closed F

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 14 / 27

VASS Finite Spanning

Vector Addition Systems with States (VASS)
Finite Spanning

Finitely Spanning

F : set of target states

∃K ∀c :

if c
∗−→ F then c

K−→ F

VASS

finitely spanning for upward closed F

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 14 / 27

Infinite-State Markov Chains

Infinite-State Markov Chains

Infinite-State Markov Chains

infinite state space

qualitative and quantitative properties

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 15 / 27

Infinite-State Markov Chains

0.2 0.3 0.5
1

2 3 4

P (1 , 3) = 0.5

1

0.3 0.3

0.5
0.5

0.4

0.5

0.5

1

0.5
0.5

0.5
0.5 1

Infinite-State Markov Chains

0.2 0.3 0.5
1

2 3 4

P (1 , 3) = 0.5

underlying transition systems

Infinite-State Markov Chains

0.2 0.3 0.5
1

2 3 4

P (1 , 3) = 0.5

1

0.3 0.3

0.5
0.5

0.4

0.5

0.5

1

0.5
0.5

0.5
0.5 1

Qualitative Reachability
Analysis

F

Qualitative Repeated
Reachability Analysis

Init

F

Init

Decisive Markov Chains Definition

Decisive Markov Chains
Definition

Decisive Markov Chains

characterized by a simple property

cover a wide class of systems

Probabilistic VASS (Probabilistic Petri Nets)
Probabilistic Lossy Channels Systems
Probabilistic Turing Machines
Probabilistic Pushdown Systems

allow qualitative and quantitative properties

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 16 / 27

Decisive Markov Chains

Decisive Markov Chains

 states from which unreachable

F

FFFF FF

F always reachable F almost certainly reached implies

Decisive Markov Chains

F

FFFF FF

F always reachable F almost certainly reached implies

Decisive Markov Chains

F

FFFF FF

F always reachable F almost certainly reached implies

Decisive Markov Chains

All finite-state Markov chains decisive

Are infinite-state Markov chains decisive?

All finite-state Markov chains decisive

Not in general

Are infinite-state Markov chains decisive?

All finite-state Markov chains decisive

F

Init

0.6 0.6 0.6 0.6

0.4 0.4 0.4 0.4

1

Not in general

F

Are infinite-state Markov chains decisive?

All finite-state Markov chains decisive

Init

0.6 0.6 0.6 0.6

0.4 0.4 0.4 0.4

1

Not in general

Are infinite-state Markov chains decisive?

All finite-state Markov chains decisive

F

Init

0.6 0.6 0.6 0.6

0.4 0.4 0.4 0.4

1

Not in general

F

Init

0.6 0.6 0.6 0.6

0.4 0.4 0.4 0.4

Are infinite-state Markov chains decisive?

All finite-state Markov chains decisive

Not decisive

1

F

0.9 Init 0.99 0.9999 0.999

0.1 0.01 0.001 0.0001 0.00001

Not in general

Are infinite-state Markov chains decisive?

All finite-state Markov chains decisive

F

0.9 Init 0.99 0.9999 0.999

0.1 0.01 0.001 0.0001 0.00001

Not in general

Are infinite-state Markov chains decisive?

All finite-state Markov chains decisive

Not decisive

Decisive Markov Chains Sufficient Conditions

Decisive Markov Chains
Sufficient Conditions

Decisive Markov Chains – Sufficient Conditions

coarseness and finite spanning

Probabilistic VASS (Probabilistic Petri Nets)
Probabilistic Turing Machines

existence of finite attractors

Probabilistic Lossy Channels Systems
Probabilistic Pushdown Systems

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 17 / 27

Decisive Markov Chains Coarseness

Decisive Markov Chains
Sufficient Conditions

Decisive Markov Chains – Sufficient Condition 1

coarseness and finite spanning

Probabilistic VASS (Probabilistic Petri Nets)
Probabilistic Turing Machines

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 18 / 27

α - coarseness

K-spanning

α - coarseness

coarseness
+

finite spanning

implies decisiveness

K-spanning

coarseness
+

finite spanning

implies decisiveness

3-spanning

Decisive Markov Chains Probabilistic VASS

Probabilistic Vector Addition Systems with States (PVASS)

PVASS

qx+ y - z- x- y+ z+
3

2

Weights

Each transition has a weight

P(c1, c2) decided by:

relative weights of transitions

Example

P((1, 0, 2), (0, 1, 3)) = 1

P((1, 1, 2), (0, 2, 3)) = 2
5

finite set of weights =⇒ coarse

PVASS =⇒
coarse

finitely spanning
=⇒ Decisive

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 19 / 27

Decisive Markov Chains Probabilistic VASS

Probabilistic Vector Addition Systems with States (PVASS)

PVASS

qx+ y - z- x- y+ z+
3

2

Weights

Each transition has a weight

P(c1, c2) decided by:

relative weights of transitions

Example

P((1, 0, 2), (0, 1, 3)) = 1

P((1, 1, 2), (0, 2, 3)) = 2
5

finite set of weights =⇒ coarse

PVASS =⇒
coarse

finitely spanning
=⇒ Decisive

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 19 / 27

Decisive Markov Chains Probabilistic VASS

Probabilistic Vector Addition Systems with States (PVASS)

PVASS

qx+ y - z- x- y+ z+
3

2

Weights

Each transition has a weight

P(c1, c2) decided by:

relative weights of transitions

Example

P((1, 0, 2), (0, 1, 3)) = 1

P((1, 1, 2), (0, 2, 3)) = 2
5

finite set of weights =⇒ coarse

PVASS =⇒
coarse

finitely spanning
=⇒ Decisive

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 19 / 27

Decisive Markov Chains Probabilistic VASS

Probabilistic Vector Addition Systems with States (PVASS)

PVASS

qx+ y - z- x- y+ z+
3

2

Weights

Each transition has a weight

P(c1, c2) decided by:

relative weights of transitions

Example

P((1, 0, 2), (0, 1, 3)) = 1

P((1, 1, 2), (0, 2, 3)) = 2
5

finite set of weights =⇒ coarse

PVASS =⇒
coarse

finitely spanning
=⇒ Decisive

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 19 / 27

Decisive Markov Chains Attractors

Decisive Markov Chains
Sufficient Conditions

Decisive Markov Chains – Sufficient Condition 2

existence of finite attractors

Probabilistic Lossy Channels Systems
Probabilistic Pushdown Systems

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 20 / 27

Attractors

A

A

Attractors

A

Implies

A

 Finite attractor Decisiveness

A

 Finite attractor Decisiveness

A

 Finite attractor Decisiveness

A

 Finite attractor Decisiveness

Probabilistic Lossy Channel
Systems (PLCS)

Process 1

Process 2

Process 3

● Model:
– Finite state processes
– Unbounded lossy channels
– Send & receive operations

● Motivation:
– Models of communication

protocols

!m

?n

m p p m …

A

D

Sufficient:
● One channel
● One process

Properties:
● Infinite state space
● Perfect channel = Turing machine

B

D

A

Probabilistic Lossy Channel
Systems (PLCS)

Transitions:

m p p m … m

!mSend
A B

m p p m …

!m

?n

A

D

B

D

Probabilistic Lossy Channel
Systems (PLCS)

Transitions:

m m p p m …

?m
A B

Receive

m p p m … m

!mSend
A B

m p p m …

!m

?n

A

D

B

D

Probabilistic Lossy Channel
Systems (PLCS)

Transitions:

m m p p m …

?m
A B

Receive

m p p m … m

!mSend
A B

No-op A B

!m

?n

m p p m …

A

DD

B

Probabilistic Lossy Channel
Systems (PLCS)

 message loss:

p m n p n …

p n n …

Probabilistic Lossy Channel
Systems (PLCS)

● Each transition:

each message lost with prob λ > 0,

independently

Decisive Markov Chains Probabilistic Lossy Channel Systems

PLCS

Finite Attractor

set of configurations with empty channels

PLCS =⇒ Finite
Attractor

=⇒ Decisive

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 21 / 27

Decisive Markov Chains Probabilistic Lossy Channel Systems

PLCS

Finite Attractor

set of configurations with empty channels

PLCS =⇒ Finite
Attractor

=⇒ Decisive

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 21 / 27

Qualitative Reachability Analysis

Qualitative Reachability Analysis

Qualitative Reachability Analysis

analyze underlying transition system

structural properties: reachability of F and F̃

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 22 / 27

Qualitative Reachability Analysis

Qualitative Reachability Analysis

Qualitative Reachability Analysis

implies

Qualitative Reachability Analysis

implies

Init

Qualitative Reachability Analysis

implies

Init

Qualitative Reachability Analysis

Implies?

Qualitative Reachability Analysis

Not in general !!

Implies?

F
0.6

Init

0.6 0.6 0.6 0.6

0.4 0.4 0.4 0.4 0.4

Qualitative Reachability Analysis

Yes if decisive !!

Implies?

Init

Qualitative Reachability Analysis

Yes if finite attractor
exists !!

Yes if coarse and finitely
spanning !!

Implies?

Yes if decisive !!

Qualitative Reachability Analysis

Yes if finite attractor
exists !!

Yes if coarse and finitely
spanning !!

Yes: PVASS Yes: NTM Yes: PLCS

Implies?

Yes if decisive !!

Qualitative Reachability Analysis

Yes: PVASS Yes: NTM Yes: PLCS

iff

Qualitative Reachability Analysis

Can we check

Qualitative Reachability Analysis

Yes:
PVASS -- F set of control states

Can we check

Qualitative Reachability Analysis

No:
PVASS -- F upward closed

undecidable

Can we check

Yes:
PVASS -- F set of control states

Qualitative Reachability Analysis

No:
PVASS -- F upward closed

Yes:
PLCS

undecidable

Can we check

Yes:
PVASS -- F set of control states

Qualitative Repeated Reachability Analysis

Qualitative Repeated Reachability Analysis

Qualitative Repeated Reachability Analysis

analyze underlying transition system

structural properties: reachability of F

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 23 / 27

Qualitative Repeated Reachability Analysis

Qualitative Repeated Reachability Analysis

Qualitative Repeated Reachability Analysis

Qualitative Repeated Reachability Analysis

implies

Qualitative Repeated Reachability Analysis

implies

Init

Qualitative Repeated Reachability Analysis

Implies ?

Qualitative Repeated Reachability Analysis

Implies ?

Not in general !!

F
0.6

Init

0.6 0.6 0.6 0.6

0.4 0.4 0.4 0.4 0.4

Qualitative Repeated Reachability Analysis

Yes if decisive !!

Implies ?

Init

Qualitative Repeated Reachability Analysis

Yes if finite attractor
exists !!

Yes if coarse and finitely
spanning !!

Yes: PVASS Yes: NTM Yes: PLCS

Implies ?

Yes if decisive !!

Yes: PVASS Yes: NTM Yes: PLCS

Qualitative Repeated Reachability Analysis

iff

Can we check

Qualitative Repeated Reachability Analysis

Qualitative Repeated Reachability Analysis

Can we check

Yes:
PVASS -- F set of local states

Yes:
PVASS -- F upward closed

Yes:
PLCS -- F set of local states

decidable

Qualitative Repeated Reachability Analysis

Can we check

Approximate Quantitative Reachability Analysis

Qualitative Reachability Analysis

(Approximate) Quantitative Reachability Analysis

expand the reachability tree

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 24 / 27

(Approximate) Quantitative Reachability Analysis

Yes: =

No: =

Init

Quantitative Reachability Analysis

.2 .3 .5

Yes: =

No: =

Init

Quantitative Reachability Analysis

.5
Yes: =

No: =

.2 .3 .5

Init

Quantitative Reachability Analysis

.2 .3 .5

.5
Yes: = Yes + .15

No: =

Init

Quantitative Reachability Analysis

.2 .3 .5

.5
Yes: =

No: = No + .15

Init

Quantitative Reachability Analysis

.2 .3 .5

.5
Yes: =

No: =
.8 .1 .1

Init

Quantitative Reachability Analysis

.2 .3 .5

.5

.8 .1 .1

Init

Quantitative Reachability Analysis

.2 .3 .5

.5

.8 .1 .1

After Termination:

Init

Quantitative Reachability Analysis

.2 .3 .5

.5

.8 .1 .1

Decisiveness:
Termination Guaranteed

Init

.2 .3 .5

.5

Init

Finite Attractor:
Termination Guaranteed

Quantitative Repeated Reachability Analysis

Yes: = Yes + .15

Game Probabilistic Lossy Channel Systems

Stochastic Games with Lossy Channels

Stochastic Games with Lossy Channels

turn-based stochastic games

induced by PLCS (Probabilistic Lossy Channel Systems)

repeated reachability objectives

almost sure winning conditions

we show:

pure memoryless determined
effective construction of winning set of configurations

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 25 / 27

Game Probabilistic
Lossy Channel Systems (GPLCS)

Process 1

Process 3

λ

Evil
Cracker

● Game:
Interaction with evil cracker

● Probabilistic:
Messages lost randomly
(probability λ)

λ

λ
λ λ

λ

λ
λ

!m

?n

m p p m …

A

D

Game Probabilistic
Lossy Channel Systems (GPLCS)

B

C

Sufficient:
● One channel
● One process
● Each state controlled by a player

Properties:
● Infinite state space
● Perfect channel = Turing machine

!m

?n

m p p m …

A

D

B

C

State: s = (A, mpnn)

Game Probabilistic
Lossy Channel Systems (GPLCS)

Transitions:

m p p m … m

!mSend
A B

!m

?n

m p p m …

A

D

B

C

Game Probabilistic
Lossy Channel Systems (GPLCS)

Transitions:

m m p p m …

?m
A B

Receive

m p p m … m

!mSend
A B

!m

?n

m p p m …

A

D

B

C

Game Probabilistic
Lossy Channel Systems (GPLCS)

Transitions:

m m p p m …

?m
A B

Receive

m p p m … m

!mSend
A B

No-op
A B

!m

?n

m p p m …

A

D

B

C

Game Probabilistic
Lossy Channel Systems (GPLCS)

Probabilistic message loss:

p m n p n …

p n n …

● Each transition:

each message lost with prob λ > 0,

independently

Game Probabilistic
Lossy Channel Systems (GPLCS)

Stochastic Games

● Every GPLCS induces a stochastic game
● Infinite state
● 3 types of states:

– Player GOOD

– Player BAD

– Player RANDOM

0.10.2 0.7

0.4

0.6

Stochastic Games

● Every GPLCS induces a stochastic game
● Infinite state
● 3 types of states:

0.10.2 0.7

0.4

0.6

Stochastic Games

● Strategy
= selection of outgoing transitions

● Strategies for GOOD & BAD

 Only probabilistic
 choices remain

 “Prob(event)”
 well-defined

0.10.2 0.7

0.4

0.6

Stochastic Games

● Strategy
= selection of outgoing transitions

● Strategies for GOOD & BAD

 Only probabilistic
 choices remain

 “Prob(event)”
 well-defined

0.10.2 0.7

0.4

0.6

Repeated Reachability
for GPLCS

● Input:
– GPLCS
– Set F of final states

● Output: Partition of states:

Winning for BAD Winning for GOOD

GOOD forces
Prob(reach F inf. often) = 1

BAD forces
Prob(reach F inf. often) < 1

Game Probabilistic Lossy Channel Systems Algorithm

Stochastic Games with Lossy Channels

Algorithm

Subroutine: Force-set

algorithm

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 26 / 27

Subroutine: Force-set

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Q

Prob > 0

Subroutine: Force-set
Construction

Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Q0 = Q

Subroutine: Force-set
Construction

Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Q0 = Q
Q1

 = 1 step before Q0

Subroutine: Force-set
Construction

Q

GOOD states that
can go to Q0

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Q0 = Q
Q1

 = 1 step before Q0

Subroutine: Force-set
Construction

Q

GOOD states that
can go to Q0

BAD states that
must go to Q0

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Q0 = Q
Q1

 = 1 step before Q0

Subroutine: Force-set
Construction

Q

GOOD states that
can go to Q0

BAD states that
must go to Q0

RANDOM states that
can go to Q0

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Q0 = Q
Q1

 = 1 step before Q0

Subroutine: Force-set
Construction

Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

Subroutine: Force-set
Construction

Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

GOOD states that
can go to Q1

BAD states that
must go to Q1

RANDOM states that
can go to Q1

Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

Subroutine: Force-set
Construction

∙ ∙ ∙ Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search Qn = 1 step before Qn-1

Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

Subroutine: Force-set
Convergence

∙ ∙ ∙ Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search Qn = 1 step before Qn-1

Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

Converges?

Subroutine: Force-set
Convergence

∙ ∙ ∙ Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search Qn = 1 step before Qn-1

Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

Converges?

YES! for GPLCS
(well quasi orders)

Subroutine: Force-set
Correctness

∙ ∙ ∙ Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Correct?

Qn = 1 step before Qn-1
Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

Subroutine: Force-set
Correctness

∙ ∙ ∙ Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Correct?

Qn = 1 step before Qn-1
Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

YES!
(and I'll show why)

Subroutine: Force-set
Correctness

∙ ∙ ∙ Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Correct?

Qn = 1 step before Qn-1
Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

In Qn, GOOD can force
Prob(reach Q) > 0
by construction

Subroutine: Force-set
Correctness

∙ ∙ ∙ Q

● Force-set ≈ “Reachability for games”
– Given target set Q
– Compute the set of states where

GOOD can force Prob(reach Q) > 0
● Backward search

Correct?

Qn = 1 step before Qn-1
Q2 = 1 step before Q1

Q0 = Q
Q1

 = 1 step before Q0

In Qn, GOOD can force
Prob(reach Q) > 0
by construction

Outside Qn, BAD can force
Prob(reach Q) = 0

island 0

LAND – always food!

. . .
island 1 island 2 island 3

GOOD trapped

BAD trapped

water 0 water 1 water 2

● A world of islands and water
● No food (= F) on islands
● In water, may float to island (possibly elsewhere, too)
● Find BAD islands and water!

Algorithm
Idea

Algorithm
Idea

island 0island 0

LAND – always food!

. . .
island 1 island 2 island 3

BAD trapped

water 0 water 1 water 2

GOOD trapped

● A world of islands and water
● No food (= F) on islands
● In water, may float to island (possibly elsewhere, too)
● Find BAD islands and water!

Algorithm
Idea

island 0island 0

LAND – always food!LAND – always food!

. . .
island 1 island 2 island 3

BAD trapped

water 0 water 1 water 2

GOOD trapped

● A world of islands and water
● No food (= F) on islands
● In water, may float to island (possibly elsewhere, too)
● Find BAD islands and water!

Algorithm
Idea

island 0island 0

LAND – always food!LAND – always food!

. . .
island 1 island 2 island 3

BAD trapped

water 0 water 1 water 2

GOOD trapped

● A world of islands and water
● No food (= F) on islands
● In water, may float to island (possibly elsewhere, too)
● Find BAD islands and water!

Algorithm
Idea

island 0island 0

LAND – always food!LAND – always food!

. . .
island 1 island 2 island 3

BAD trapped

water 0 water 1 water 2

GOOD trapped

● A world of islands and water
● No food (= F) on islands
● In water, may float to island (possibly elsewhere, too)
● Find BAD islands and water!

Algorithm
Idea

island 0island 0

LAND – always food!LAND – always food!

. . .
island 1 island 2 island 3

BAD trapped

water 0 water 1 water 2

GOOD trapped

● A world of islands and water
● No food (= F) on islands
● In water, may float to island (possibly elsewhere, too)
● Find BAD islands and water!

Algorithm
Idea

island 0island 0

LAND – always food!LAND – always food!

. . .
island 1 island 2 island 3

BAD trapped

water 0 water 1 water 2

GOOD trapped

● A world of islands and water
● No food (= F) on islands
● In water, may float to island (possibly elsewhere, too)
● Find BAD islands and water!

Algorithm
Idea

island 0island 0

LAND – always food!LAND – always food!

. . .
island 1 island 2 island 3

BAD trapped

water 0 water 1 water 2

GOOD trapped

● A world of islands and water
● No food (= F) on islands
● In water, may float to island (possibly elsewhere, too)
● Find BAD islands and water!

Algorithm
Idea

island 0island 0

LAND – always food!LAND – always food!

. . .
island 1 island 2 island 3

BAD trapped

water 0 water 1 water 2

GOOD trapped

● A world of islands and water
● No food (= F) on islands
● In water, may float to island (possibly elsewhere, too)
● Find BAD islands and water!

Algorithm
Overview

F

Algorithm
Overview

Island 0

F

Prob > 0

● Compute Q: GOOD can force Prob(reach F) > 0

Q

Algorithm
Overview

Island 0

F I0

● Compute Q: GOOD can force Prob(reach F) > 0
● I0 = complement(Q)
● So BAD can force Prob(reach F) = 0 on I0

Algorithm
Overview

F I0

Water 0

● Compute Q: BAD can force Prob(reach I0) > 0

Prob > 0

Q

Algorithm
Overview

F W0 I0

Water 0

● Compute Q: BAD can force Prob(reach I0) > 0
● W0 = Q

Algorithm
Overview

F W0 I0

Island 1

Prob > 0

● Compute Q:
GOOD can force Prob(reach F) > 0, avoiding I0 and W0

Q

Algorithm
Overview

F I1 W0 I0

Island 1

● Compute Q:
GOOD can force Prob(reach F) > 0, avoiding I0 and W0

● I1 = complement(Q)

Algorithm
Overview

F I1 W0 I0

Prob > 0

● Compute Q: BAD can force Prob(reach I0 υ W0 υ I1) > 0

Water 1

Algorithm
Overview

F W1 I1 W0 I0

● Compute Q: BAD can force Prob(reach I0 υ W0 υ I1) > 0
● W1 = Q

Water 1

Algorithm
Overview

F W1 I1 W0 I0

Island 2

● Compute Q:
GOOD can force Prob(reach F) > 0, avoiding I0,W0,I1,W1

Q

Prob > 0

Algorithm
Overview

F I2 W1 I1 W0 I0

Island 2

● Compute Q:
GOOD can force Prob(reach F) > 0, avoiding I0,W0,I1,W1

● I2 = complement(Q)

Algorithm
Overview

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Algorithm
Convergence

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Converges?

Algorithm
Convergence

F ∙ ∙ ∙ I2 W1 I1 W0 I0 YES! for GPLCS
(well quasi orders, difficult)

Converges?

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

YES!
(and I'll show why)

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

GOOD can force
Prob(reach F inf. often) = 1

BAD can force
Prob(reach F inf. often) < 1

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

BAD can force
Prob(reach F inf. often) < 1

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

In I0:
Prob(reach F inf. often) < 1

(since even
Prob(reach F) = 0)

BAD can force
Prob(reach F inf. often) < 1

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

In Wn:
Prob(reach F inf. often) < 1
(since Prob(reach In) > 0)

In I0:
Prob(reach F inf. often) < 1

(since even
Prob(reach F) = 0)

BAD can force
Prob(reach F inf. often) < 1

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

In In:
GOOD chooses how to die:
● stay in In and lose (no F)
● or go to Wn-1 and lose

In Wn:
Prob(reach F inf. often) < 1
(since Prob(reach In) > 0)

In I0:
Prob(reach F inf. often) < 1

(since even
Prob(reach F) = 0)

BAD can force
Prob(reach F inf. often) < 1

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

In In:
GOOD chooses how to die:
● stay in In and lose (no F)
● or go to Wn-1 and lose

In Wn:
Prob(reach F inf. often) < 1
(since Prob(reach In) > 0)

In I0:
Prob(reach F inf. often) < 1

(since even
Prob(reach F) = 0)

So BAD wins
with prob. > 0

in all Wn, In

BAD can force
Prob(reach F inf. often) < 1

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

GOOD can force
Prob(reach F inf. often) = 1

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

● Convergence means:
– No more watern
– No more island

GOOD can force
Prob(reach F inf. often) = 1

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

● Convergence means:
– No more water GOOD can stay outside In, Wn
– No more island

GOOD can force
Prob(reach F inf. often) = 1

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

● Convergence means:
– No more water GOOD can stay outside In, Wn
– No more island GOOD can force Prob(reach F) > 0

GOOD can force
Prob(reach F inf. often) = 1

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

● Convergence means:
– No more water GOOD can stay outside In, Wn
– No more island GOOD can force Prob(reach F) > 0

So GOOD can force:
Always Prob(reach F) > 0

GOOD can force
Prob(reach F inf. often) = 1

Algorithm
Correctness

F ∙ ∙ ∙ I2 W1 I1 W0 I0

Correct?

So GOOD can force:
Always Prob(reach F) > 0

● Convergence means:
– No more water GOOD can stay outside In, Wn
– No more island GOOD can force Prob(reach F) > 0

For GPLCS, this implies
Prob(reach F inf. often) = 1

(using attractors, difficult)

GOOD can force
Prob(reach F inf. often) = 1

Conclusions and Future Work

Conclusions

Decisive Markov Chains

Stochastic Games on LCS

Other work: Eager Markov Chains:

Computing expected reward (cost) of runs
Expected residence time

Future Work

probabilistic timed Petri nets

distributed systems with probabilistic components

Parosh Aziz Abdulla (Uppsala University) Infinite-State Verification: From Transition Systems to Markov ChainsSeptember 13, 2009 27 / 27

	Outline
	Infinite-State Transition Systems
	VASS
	Model
	Ordering
	Coverability
	Backward Reachability Analysis
	Finite Spanning

	Infinite-State Markov Chains
	Decisive Markov Chains
	Definition
	Sufficient Conditions
	Coarseness
	Probabilistic VASS
	Attractors
	Probabilistic Lossy Channel Systems

	Qualitative Reachability Analysis
	Qualitative Repeated Reachability Analysis
	Approximate Quantitative Reachability Analysis
	Game Probabilistic Lossy Channel Systems
	Model
	Algorithm

	Conclusions and Future Work

