
1

2

•  Very used in dependability analysis of
complex systems

•  Simplified version and description here
•  System is composed of components

belonging to C classes
•  Components are either up or down
•  The whole system is also either up or down
•  Failures and repairs (of any component) are

exponentially distributed
•  CTMC Y = (Y1,…,YC) where Yc is the number

of up components in class c

3

•  There is a (structure) function saying for
any value of Y if the system’s state is up or
down

•  Let Δ be the set of down states
•  Let 1 be the state where all components

are up, the initial state of Y
•  Goal: evaluate µ = Pr(hitting Δ before 1)
•  This is an important metric in dependability

analysis (and also in performance issues)

4

•  Usual situation: at some time scale, failure
rates are in O(ε) and repairs in O(1)

•  To estimate µ, we can
–  move to the canonically embedded DTMC
–  and use the standard Monte Carlo approach

•  In the DTMC, failure probabilities are in
O(ε) (except for state 1) and repair ones in
O(1)

•  Idea: use Importance Sampling

5

•  Also sometimes called Simple Failure
Biaising

•  Probably the simplest idea
•  Idea: just push the system towards Δ by

changing the (small) failure probabilities
into something “not small”

•  For any state x ≠ 1 in the DTMC,
–  we change the total (the sum) of the

corresponding failure probabilities to some
constant q (typically 0.5 < q < 0.8)

–  and we distribute it proportionally to the
original values

6

0

2,2

2,1 1,2

1,1

1 ε

1 1

ε

ε

1/2 1/2

ε2

ε2

ε2

0

2,2

2,1 1,2

1,1

1 ε

1-q 1-q

q

q

(1-q)/2 (1-q)/2

qε

q/2

q/2

first order (in ε) expressions

before after

1 = (2,2)

7

symbolically, for an operational state x ≠ 1

before after

x

ε2

ε1 a1

a2

x
ε1
ε1+ ε2

ε2
ε1+ ε2

a2
a1+ a2

a1
a1+ a2

This technique works but
it does not have the BRE property

q

q

(1-q)

(1-q)

8

before after

x

ε2

ε1 a1

a2

x

a2
a1+ a2

a1
a1+ a2

This version does have the BRE property

(1-q)

(1-q)

q
2

q
2

9

•  Let us call a failure event consisting in the
first failure in some class of components.

•  Accordingly, a failure is any other
failure event.

•  Intuitively, it seems a good idea to give more
“weight” to secondary failures, expecting to reach
set Δ quicker this way.

•  This leads to the Selective Biasing scheme shown
in next slide.

10

symbolically, for an operational state x ≠ 1

before after

This technique works but
it does not have the BRE property

ε1
ε1+ ε2

q(1-r)

a2
a1+ a2 (1-q)

a1
a1+ a2 (1-q) x

ε1

a1

a2

ε2

ε3

ε4

initial
failures

secondary
failures

x

ε2
ε1+ ε2

q(1-r)

ε5
ε3+ ε4+ ε5

qr
ε5

ε4
ε3+ ε4+ ε5

qr

ε3
ε3+ ε4+ ε5

qr

0.5 < q, r < 0.8 (say)

11

before after

This technique does have the BRE property

q(1-r)

a2
a1+ a2 (1-q)

a1
a1+ a2 (1-q) x

ε1

a1

a2

ε2

ε3

ε4

initial
failures

secondary
failures

x
q(1-r)

qr
ε5

qr

qr

1
2

1
3

1
2

1
3

1
3

12

•  Always the same idea: take advantage of available
information, if possible.

•  Here, we assume that not only we know if failures
are initial or not, but also, we know that the
system’s structure is “series-like”.

•  The typical example is a series of k-out-of-n
modules. Denote the parameters of module i as ki,
ni.

•  We define as the failure of a component in
a module i such that after it, we have

 Yi – ki = minj (Yj – kj).

13

symbolically, for an operational state x ≠ 1

before after

This technique works but
it does not have the BRE property

ε1
ε1+ ε2

q(1-r)

a2
a1+ a2 (1-q)

a1
a1+ a2 (1-q) x

ε1

a1

a2

ε2

ε3

ε4

critical
failures

non-critical
failures

x

ε2
ε1+ ε2

q(1-r)

ε5
ε3+ ε4+ ε5

qr
ε5

ε4
ε3+ ε4+ ε5

qr

ε3
ε3+ ε4+ ε5

qr

0.5 < q, r < 0.8 (say)

14

before after

This technique does have the BRE property

q(1-r)

a2
a1+ a2 (1-q)

a1
a1+ a2 (1-q) x

ε1

a1

a2

ε2

ε3

ε4

critical
failures

non-critical
failures

x
q(1-r)

qr
ε5

qr

qr

1
2

1
3

1
2

1
3

1
3

15

•  Other ideas have been published and shown to be
effective (names are not “standardized”):
–  SFBP: SFB for Parallel-like systems

•  similar to SFBS but for systems composed of a set of
modules working in parallel

–  DSFB: Distance-based SFB
•  for systems where it is possible to evaluate with almost no

cost the distance from any up state to Δ
–  IDSFB: Inverse-Distance-based SFB

•  an improvement of DSFB
–  IFB: Inverse SFB

•  a method based on the optimal IS c.o.m. for the M/M/1
queuing model

–  and others…

16

•  The zero variance idea in IS leads to very
efficient methods for this HRMS family of
models.

•  Recall that in this approach, we consider the
probability µx of hitting Δ before 1, starting from
any state x of the chain.

•  Some existing results:
–  methods with BRE
–  even “vanishing relative error” obtained, when the

approximation of µx can use all paths from x to Δ with
smallest degree in ε.

17

•  Numerical results so far are impressive with these
techniques (in terms of efficiency and also of
stability).

•  For instance, in a model with 20 classes of
components, with 4 components per class, and the
working criterion “system is up iff at least 7
components are up”, a typical result is

METHOD BFB 0 var
µ 3.1 .10-11 3.0 10-11

Var 8.5 10-18 1.3 10-24

CPU time 11 sec 97 sec

18

19

•  A variance-reduction procedure for
network reliability estimation

•  Main ideas:
–  exploit the specificities of the problem

(graph theory concepts, binary coherent
structures)

–  improve efficiency by including exact
computations into the Monte Carlo procedure

•  More specifically:
–  a recursive decomposition-based approach
–  using two basic concepts in the considered

family of systems: paths and cuts

20

•  introduction
•  some graph concepts
•  the method
•  some results

21

r1 r2
r3

r4
r5 Rst = r1 (r2 r3 + r4 - r2 r3 r4)r5

t
s

Rall = r 5 (6 - 5r)

r i = r

22

terminals

concentrators

switches

A COMMUNICATION NETWORK

23

backbone, or core

A COMMUNICATION NETWORK

24

access network

A COMMUNICATION NETWORK

25

•  nodes are perfect

•  lines behave independently

•  lines are up or down

•  for each line i,
 ri = Pr(line i is up)

Associated key-words:

•  reliability diagrams, fault-trees…

•  graph theory, coherent binary structure theory

A COMMUNICATION NETWORK

26

•  V : the nodes
K : the terminals, or target-set, K ⊆ V

E : the lines or edges
{ri}i in E : the elementary reliabilities

•  N = (V, E): (the underlying) undirected
graph (also called the network when we
include the probabilities associated with
the edges)

27

•  Ω : set of all partial sub-graphs of N
(same nodes, part of the edges)

•  G = (V, F): a random graph on Ω ;
probabilistic structure:
 for any H ⊆ E,
 Pr(G = (V, H)) = ∏ ri ∏ (1 - rj)

i ∈ H j ∉ H

28

•  goal: R = K-network reliability,
 = Pr(the nodes in K are connected)
 (or equivalently Q = 1 - R)

•  U : set of all partial sub-graphs of N where
all nodes in K are connected; thus,
 R = Pr(G in U)

•  usual situation: R ~ 1, that is, Q ~ 0
•  only MC can handle medium/large models;

but possible problem:
 the rare event situation

29

•  #failed = 0
•  for m = 1, 2, …, M

–  g = sample(G)
–  if g ∉ U then #failed += 1

•  Qstd = #failed/M
•  Vstd = Qstd(1 – Qstd)/(M - 1)

The rare event problem when Q « 1

30

•  Internal loop: sampling a graph state (state of
each edge), and verifying if it belongs or not to
set U (DFS search); total complexity is O(|E|).

•  M iterations; initialization time and final
computations in O(1).

•  Total computation time in O(M|E|), linear in # of
edges and # of replications.

31

•  the correct answer given by the MC
method is not “unreliability is Q” but
“unreliability belongs with high probability
to (Q1, Q2)”

•  more precisely, here is a possible output
“routine”:
–  Pr(Q ∈ (Q1, Q2)) ≈ 0.95

–  Q1 = Qstd - 1.96V
std, Q2 = Qstd + 1.96V

std

–  V
std = StandardEstimator(Variance(Qstd))

 = [Qstd (1 - Qstd)/(M - 1)]1/2

32

•  relative error in the answer:
 RelErr = 1.96V std/Qstd
 = [(1 – Q

std)/((M-1) Q
std]1/2

 ≈ 1/(MQ
std)1/2

which is problematic when Q
std « 1

•  Variance Reduction Techniques: estimation
methods such that the variance of the
estimators (and their own estimators) are
smaller than the variance of the crude
estimator.

33

R = 1

|K | = 1

R

|K | = 2

= r × R = r

r1
r2

r3
R = 1

|K | = 1

r1
r2

r3
R = 0

|K | = 2

34

R
r1 r2

r3

r4
r5

r1
r2 R =

r1r2 R

35

R
r1 r2 r3

r4
r5

r1
r2 R =

r1r2 R

36

R
r1

r5

r1
r2 R =

r1r2 R

r2 r3 + r4 - r2 r3 r4

etc.

37

R
r1

r5

r1
r2 R =

r1r2 R

r2 r3 + r4 - r2 r3 r4

etc.

Series-parallel reductions have polynomial cost.

38

39

40

41

42

•  Let P be a path.
•  Let P-up denote the event

 P-up = “all links in P are up”,
 Pr(P-up) = ∏link i is in P ri

•  Since P-up ⇒ system is up,
 Pr(P-up) ≤ R

•  Let C be a cut.
•  Let C-down denote the event

 C-down = “all links in C are down”,
 Pr(C-down) = ∏link i is in C (1 - ri)

•  Since C-down ⇒ system is down,
 Pr(C-down) ≤ Q = 1 - R

43

•  Again, with P be a path
and P-up the event “all links in P are up”, we can
write
 R = Pr(P-up) + [1 - Pr(P-up)] Pr(sys. up | “at
 least one link in P is down”)

•  This suggest to sample on a conditional system, to
estimate the last conditional probability (idea used
in previous works by the authors).

44

•  Here, we follow another conditioning-based idea coming also
from previous works (the RVR estimator).

•  We define an estimator Z associated with our MC method
which is illustrated here through examples:

–  if the network is

–  then

Z
r1

r2

r3
= 1

r1
r2

r3

45

–  if the network is

–  then r1
r2

r3
Z = 0

r1
r2

r3

46

–  if the network is

–  then r1
r2 Z = r1r2

r1
r2

47

–  then if the network is

–  then

•  The remaining case is a K-connected network where there is
no possible series-parallel reduction and |K | ≥ 2.

Z = Z
r1

r2 r1r2

48

Let N be

We first select a path*:
1 2

Let Li be the event “line i is up”,
and let Li be the event “line i is down”, i = 1,2.

* The RVR method used a cut, but the idea is the same.

49

•  We partition Ω in the following way:
 Ω = {L1L2 , L1 , L1L2 }

Prob. = r1r2
Prob. = 1 - r1

Prob. = r1(1 - r2)

•  Let X be the r.v. “first line down in the path”, i = 1,2,
with X = 0 if all lines in the path are up.
•  Let Y = X | X > 0 (Y lives in {1,2})
•  We have Pr(Y = 1) = (1 - r1) /(1 - r1r2)
 and Pr(Y = 2) = r1(1 - r2)/(1 - r1r2).

50

Z = r1r2

Z + (1 - r1r2) 1{Y = 1}

+ (1 - r1r2) 1{Y = 2} Z

Ω = {L1L2 , L1 , L1L2 }

51

Z = r1r2

Z + (1 - r1r2) 1{Y = 1}

+ (1 - r1r2) 1{Y = 2} Z

to evaluate Z here,

Ω = {L1L2 , L1 , L1L2 }

52

Z = r1r2

Z + (1 - r1r2) 1{Y = 1}

+ (1 - r1r2) 1{Y = 2} Z

to evaluate Z here,

we sample Y

Ω = {L1L2 , L1 , L1L2 }

53

Z = r1r2

Z + (1 - r1r2) 1{Y = 1}

+ (1 - r1r2) 1{Y = 2} Z

If we get for Y value 2, we have a
series-parallel reducible network,
so, we do an exact and fast computation.

Ω = {L1L2 , L1 , L1L2 }

54

Z = r1r2

Z + (1 - r1r2) 1{Y = 1}

+ (1 - r1r2) 1{Y = 2} Z

and this is series-parallel reducible

If we get value 1, the procedure continues
recursively from this network.

Ω = {L1L2 , L1 , L1L2 }

55

•  It consists of generalizing this idea to work with a path and
a cut simultaneously.

•  Assume we select a cut C = (l1, l2, l3) and a path P = (l1, l’2, l’3)
(paper’s notation here).

•  Denote by Li (resp. by L’i) the event ”link li is up” (resp. “link
l’i is up”), and by Li (resp. by L’i) the event ”link li is
down” (resp. ”link l’i is down”).

•  Consider we partition first Ω into the events {L1L’2L’3, L1,
L1L’2, L1L’2L’3}, that is, the events

–  “all 3 links in P work”,
–  “link l1 of P is down”
–  “in P, link l1 is up and link l’2 is down”
–  “in P, links l1 and l’2 are up and link l’3 is down”

56

Ω

L1L’2L’3 L1 L1L’2 L1L’2L’3

57

Ω

L1L’2L’3 L1 L1L’2 L1L’2L’3

here,
system is up

58

•  Now, we refine the partition crossing the previous
decomposition with the partition {L1L2L3, L1, L1L2, L1L2L3},
using now cut C.

59

L1L’2L’3 L1 L1L’2 L1L’2L’3

L1L2L3

L1

L1L2

L1L2L3

60

L1L’2L’3 L1 L1L’2 L1L’2L’3

L1L2L3

L1

L1L2

L1L2L3
Ø

Ø

Ø Ø

Ø

Ø

Ø

Ø

61

L1L’2L’3 L1 L1L’2 L1L’2L’3

L1L2L3

L1

L1L2

L1L2L3
Ø

Ø

Ø Ø

Ø

Ø

Ø

Ø

+

- - -

62

L1L’2L’3 L1 L1L’2 L1L’2L’3

L1L2L3

L1

L1L2

L1L2L3
Ø

Ø

Ø Ø

Ø

Ø

Ø

Ø

+

- - -

L1L’2 L1L’2L’3

L1L2

L1L2L3

63

L1L’2L’3 L1 L1L’2 L1L’2L’3

L1L2L3

L1

L1L2

L1L2L3
Ø

Ø

Ø Ø

Ø

Ø

Ø

Ø

+

- - -

L1L’2 L1L’2L’3

L1L2

L1L2L3

B’2 B’3 B3 B2

64

L1L’2L’3 L1 L1L’2 L1L’2L’3

L1L2L3

L1

L1L2

L1L2L3
Ø

Ø

Ø Ø

Ø

Ø

Ø

Ø

+

- - -

L1L’2 L1L’2L’3

L1L2

L1L2L3

p2 p3 q3 q2

65

•  Remark: the only sampled variables are the Yk (the auxiliary
variable at the kth irreducible and not trivial network found
in the recursive process)

•  THEOREM
–  E(Z) = Q (so, unbiaised estimator)
–  Var(Z) ≤ [R - Pr(P-up)][Q - Pr(C-down)] ≤ RQ (so, variance

reduction)

•  sum = 0.0
•  for m = 1, 2, …, M

–  z = sample(Z)
–  sum += z
•  Qre = sum/M

66

M = 106 samples

•  r1 = 1 - exp(-1/0.3) ~ 0.964326

•  r2 = 1 - exp(-1/0.1) ~ 0.999955

•  r3 = 1 - exp(-1/0.8) ~ 0.713495

•  r4 = 1 - exp(-1/0.1) ~ 0.999955

•  r5 = 1 - exp(-1/0.2) ~ 0.993262

4
3

52

1

(R ~ 0.999929)

Var(Qstd)/Var’(Qre) ~ 1.95×106

Var’(Qce)/Var’(Qre) ~ 187

(Var’(Qx) is the variance
of the considered estimator x
of Q)

a recent cross-entropy-based
estimator

67

qi = 1 - ri Q Var(Qstd)/
Var’(Qre)

Var’(Qce)/
Var’(Qre)

10-3 ~ 4.00×10-12 ~ 4.49×105 ~ 2.07

10-6 ~ 4.00×10-18 ~ 4.44×1011 ~ 2.06

M = 106 samples
|V | = 9,
|K | = 4,
|E | = 12

68

|V | = 36,
|K | = 4,
|E | = 60

M = 106 samples

qi Q Var(Qstd)/
Var’(Qre)

Var’(Qce)/
Var’(Qre)

10-3 ~ 4.01×10-6 ~ 1.13×105 ~ 1.06

10-6 ~ 4.00×10-12 ~ 1.11×1011 ~ 1.04

69

•  We varied K (|K | = 2, |K | = 5, |K | = 10) and we considered
always the case ri = r varying r from 0.99 to 0.1.

•  Main goal of the experiments: evaluate the improvement of
working with both a cut and a path, compared to the original
technique that used only a cut.

•  For instance, the ratio between the variance of the
estimator using only a cut and the variance of the new one
goes from ~ 2 when |K | = 10 and r = 0.1 to ~ 1027 when |K | =
2 and r = 0.99.

70

Here, we took always the case of |K | = 2 but varied the
distance between the two terminals (in the picture, that
distance is 5).

71

•  We also varied ri = r from 0.99 to 0.1.
•  When the distance is 1, the ratio between the variance of

the estimator using only a cut and the variance of the new
one goes from ~ 3.8×103 if r = 0.99 to ~ 9.2×107 if r = 0.1.

•  At the other extreme, when the distance was 5, the method
using only a cut was slightly better in the case of r = 0.99;
for the remaining values of r the ratio ranged in the interval
~ (2.4 , 4.6).

72

•  The method is simple and efficient (so far it compares well
with previous proposals, while this must be explored more in
deep).

•  It can be extended to more powerful decompositions.
•  More importantly, the choice of the cut and the path is not

evident (because of the transformations made to the graphs
when simplifying them inside the recursive procedure).

73

74

•  A time-reduction procedure for network
reliability estimation

•  Main idea:
–  again, exploit the specificities of this static

problem
–  a version of conditional Monte Carlo

•  For simplicity, and because we are probably
close to out of time at this point, we
consider only the source-to-terminal case

75

•  #failed = 0
•  for m = 1, 2, …, M

–  g = sample(G)
–  if g ∉ U then #failed += 1

•  Qstd = #failed/M
•  Vstd = Qstd(1 – Qstd)/(M - 1)

The rare event problem when Q « 1

76

•  Internal loop: sampling a graph state (state of
each edge), and verifying if it belongs or not to
set U (DFS search); total complexity is O(|E|).

•  M iterations; initialization time and final
computations in O(1).

•  Total computation time in O(M|E|), linear in # of
edges and # of replications.

77

•  Imagine we implement the crude Monte
Carlo procedure in the following way:
–  first, we build a (huge) table with M rows (e.g.

M = 109) and |E | + 1 columns
–  each row corresponds to a replication
–  row m:

•  column i: 1 if edge i works at repl. m, 0 otherwise
•  last column (|E | + 1): 1 if sys. ok, 0 otherwise

–  then, we count the # of 0 in last column, we
divide by M and we have our estimator Qstd

78

•  We consider the case of case ri ≈ 1
•  Look at column i now: full of ‘1’, from time

to time a ‘0’
•  Call Fi the r.v. “first row in the table with a

‘0’ in column i ”
•  Assume the table is infinite: in that case, Fi

is geometric on {1, 2, …} with
 Pr(Fi = f) = ri

f-1 (1 - ri)
and

 E(Fi) = ri /(1 - ri)

79

•  This suggests the following procedure:
–  sample the geometric r.v. F1, F2, … and compute

W = min{F1 , F2,…}
–  consider that in replications 1, 2, …, W-1, the

system was operational
–  for replication W, perform the DFS test
–  then, start again for each column (edge),

sampling the next ‘0’ value, then looking for the
next row with at least one ‘0’…

•  Formalizing this procedure we can prove
that it can be seen as an implementation of
the standard estimator

80

•  For a table with M rows,
–  each Fi is sampled, on the average, M/E(Fi)

times, thus, the total cost is

–  in the rare event case, the usual situation is
(1 - ri)/ri « 1 and even

 « 1

€

€

M 1− ri
rii∑

€

1− ri
rii∑

81

•  # of calls to the DFS procedure?
–  on the average, M/E(W) times

•  Since W is also geometric with parameter
r = r1 r2 … r|E|, the mean cost of the method
is

•  For instance, assume ri = 1 – ε
•  The total mean cost is ~ ε M |E |2

€

M 1− ri
ri

+ | E | 1− r
ri

∑

82

•  Dividing the mean cost of the standard
approach M |E | by the mean cost of this
more efficient “implementation”, we get

 1/(ε|E |)

83

•  Consider the following example:

source = 1
terminal = 14
ri = 0.9999

the new method
runs ~ 500 times
faster than crude
(for the same
accuracy)

84

•  The procedure can be improved further
•  For instance, the DFS can be called only if

the number of ‘0’ in the row is at least
equal to the breadth of the graph

•  In the previous example, this leads to an
improvement factor of ~ 600

85

86

•  Many other techniques, applications and
problems, not even mentioned here.

•  Some randomly chosen examples:
–  use of Quasi-Monte Carlo techniques
–  using other types of information
–  splitting with static models
–  applications in physics (where “everything was

invented…”)
–  …

•  Slides will be on-line with some added
bibliography

87

•  Reference:
G. Rubino, B. Tuffin (Editors),

 “Rare Event Simulation
 Using Monte Carlo Methods”

John Wiley & Sons,
278 pages, March 2009.

http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-0470772697.html

