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•  Very used in dependability analysis of 
complex systems 

•  Simplified version and description here 
•  System is composed of components 

belonging to C classes 
•  Components are either up or down 
•  The whole system is also either up or down 
•  Failures and repairs (of any component) are 

exponentially distributed 
•  CTMC Y = (Y1,…,YC) where Yc is the number 

of up components in class c 
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•  There is a (structure) function saying for 
any value of Y if the system’s state is up or 
down 

•  Let Δ be the set of down states 
•  Let 1 be the state where all components 

are up, the initial state of Y 
•  Goal: evaluate µ = Pr( hitting Δ before 1 ) 
•  This is an important metric in dependability 

analysis (and also in performance issues) 
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•  Usual situation: at some time scale, failure 
rates are in O(ε) and repairs in O(1) 

•  To estimate µ, we can 
–  move to the canonically embedded DTMC 
–  and use the standard Monte Carlo approach 

•  In the DTMC, failure probabilities are in 
O(ε) (except for state 1) and repair ones in 
O(1) 

•  Idea: use Importance Sampling 
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•  Also sometimes called Simple Failure 
Biaising 

•  Probably the simplest idea 
•  Idea: just push the system towards Δ by 

changing the (small) failure probabilities 
into something “not small” 

•  For any state x ≠ 1 in the DTMC, 
–  we change the total (the sum) of the 

corresponding failure probabilities to some 
constant q (typically 0.5 < q < 0.8) 

–  and we distribute it proportionally to the 
original values 
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symbolically, for an operational state x ≠ 1 

before after 

x 

ε2 

ε1 a1 

a2 
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This technique works but 
it does not have the BRE property 
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before after 
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•  Let us call a failure event consisting in the 
first failure in some class of components. 

•  Accordingly, a failure is any other 
failure event. 

•  Intuitively, it seems a good idea to give more 
“weight” to secondary failures, expecting to reach 
set Δ quicker this way. 

•  This leads to the Selective Biasing scheme shown 
in next slide. 
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symbolically, for an operational state x ≠ 1 

before after 

This technique works but 
it does not have the BRE property 
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ε5 
ε3+ ε4+ ε5 

qr 
ε5 

ε4 
ε3+ ε4+ ε5 

qr 

ε3 
ε3+ ε4+ ε5 

qr 

0.5 < q, r < 0.8 (say) 
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before after 

This technique does have the BRE property 
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•  Always the same idea: take advantage of available 
information, if possible. 

•  Here, we assume that not only we know if failures 
are initial or not, but also, we know that the 
system’s structure is “series-like”. 

•  The typical example is a series of k-out-of-n 
modules. Denote the parameters of module i as ki, 
ni. 

•  We define as the failure of a component in 
a module i such that after it, we have 

  Yi – ki = minj (Yj – kj). 
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symbolically, for an operational state x ≠ 1 

before after 

This technique works but 
it does not have the BRE property 
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before after 

This technique does have the BRE property 
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•  Other ideas have been published and shown to be 
effective (names are not “standardized”): 
–  SFBP: SFB for Parallel-like systems 

•  similar to SFBS but for systems composed of a set of 
modules working in parallel 

–  DSFB: Distance-based SFB 
•  for systems where it is possible to evaluate with almost no 

cost the distance from any up state to Δ 
–  IDSFB: Inverse-Distance-based SFB 

•  an improvement of DSFB 
–  IFB: Inverse SFB 

•  a method based on the optimal IS c.o.m. for the M/M/1 
queuing model 

–  and others… 
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•  The zero variance idea in IS leads to very 
efficient methods for this HRMS family of 
models. 

•  Recall that in this approach, we consider the 
probability µx of hitting Δ before 1, starting from 
any state x of the chain. 

•  Some existing results: 
–  methods with BRE 
–  even “vanishing relative error” obtained, when the 

approximation of µx can use all paths from x to Δ with 
smallest degree in ε. 
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•  Numerical results so far are impressive with these 
techniques (in terms of efficiency and also of 
stability). 

•  For instance, in a model with 20 classes of 
components, with 4 components per class, and the 
working criterion “system is up iff at least 7 
components are up”, a typical result is 

METHOD BFB 0 var 
µ 3.1 .10-11 3.0 10-11 

Var 8.5 10-18 1.3 10-24 

CPU time 11 sec 97 sec 
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•  A variance-reduction procedure for 
network reliability estimation 

•  Main ideas: 
–  exploit the specificities of the problem 

(graph theory concepts, binary coherent 
structures) 

–  improve efficiency by including exact 
computations into the Monte Carlo procedure 

•  More specifically: 
–  a recursive decomposition-based approach 
–  using two basic concepts in the considered 

family of systems: paths and cuts 
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•  introduction 
•  some graph concepts 
•  the method 
•  some results 
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r1 r2 
r3 

r4 
r5 Rst = r1 (r2 r3 + r4 - r2 r3 r4 )r5 

t 
s 

Rall = r 5 (6 - 5r) 

r i = r 
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terminals 

concentrators 

switches 

A COMMUNICATION NETWORK 
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backbone, or core 

A COMMUNICATION NETWORK 
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access network 

A COMMUNICATION NETWORK 
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•  nodes are perfect 

•  lines behave independently 

•  lines are up or down 

•  for each line i, 
         ri = Pr(line i is up) 

Associated key-words: 

•  reliability diagrams, fault-trees… 

•  graph theory, coherent binary structure theory 

A COMMUNICATION NETWORK 
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•  V : the nodes 
K : the terminals, or target-set, K ⊆ V  

E : the lines or edges 
{ri}i in E : the elementary reliabilities 

•  N = (V, E ): (the underlying) undirected 
graph (also called the network when we 
include the probabilities associated with 
the edges) 
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•  Ω : set of all partial sub-graphs of N 
(same nodes, part of the edges) 

•  G = (V, F ): a random graph on Ω ; 
probabilistic structure: 
   for any H ⊆ E, 
         Pr(G = (V, H )) = ∏ ri  ∏ (1 - rj) 

i ∈ H j ∉ H  
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•  goal: R = K-network reliability, 
           = Pr(the nodes in K are connected) 
     (or equivalently Q = 1 - R) 

•  U : set of all partial sub-graphs of N where 
all nodes in K are connected; thus, 
                        R = Pr(G in U ) 

•  usual situation: R ~ 1, that is, Q ~ 0 
•  only MC can handle medium/large models; 

but possible problem: 
            the rare event situation 
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•  #failed = 0 
•  for m = 1, 2, …, M 

–  g = sample(G) 
–  if g ∉ U then #failed += 1 

•  Qstd  = #failed/M 
•  Vstd = Qstd(1 – Qstd)/(M - 1) 

The rare event problem when Q « 1 
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•  Internal loop: sampling a graph state (state of 
each edge), and verifying if it belongs or not to 
set U ( DFS search); total complexity is O(|E|). 

•  M iterations; initialization time and final 
computations in O(1). 

•  Total computation time in O(M|E|), linear in # of 
edges and # of replications. 
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•  the correct answer given by the MC 
method is not “unreliability is Q” but 
“unreliability belongs with high probability 
to (Q1, Q2)” 

•  more precisely, here is a possible output 
“routine”: 
–  Pr( Q ∈ (Q1, Q2) ) ≈ 0.95 

–  Q1 = Qstd - 1.96V 
std,     Q2 = Qstd + 1.96V 

std 

–  V 
std = StandardEstimator(Variance(Qstd)) 

       = [Qstd (1 - Qstd)/(M - 1)]1/2 
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•  relative error in the answer: 
 RelErr = 1.96V std/Qstd 
                  = [(1 – Q 

std)/((M-1) Q 
std]1/2 

                  ≈ 1/(MQ 
std)1/2  

which is problematic when Q 
std « 1 

•  Variance Reduction Techniques: estimation 
methods such that the variance of the 
estimators (and their own estimators) are 
smaller than the variance of the crude 
estimator. 
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R = 1 

|K | = 1 

R 

|K | = 2 

= r ×  R = r 
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r3 
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r1 
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r3 
R = 0 

|K | = 2 
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R 
r1 r2 

r3 

r4 
r5 

r1 
r2 R = 

r1r2 R 
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R 
r1 r2 r3 

r4 
r5 

r1 
r2 R = 

r1r2 R 
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R 
r1 

r5 

r1 
r2 R = 

r1r2 R 

r2 r3 + r4 - r2 r3 r4 

etc. 
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R 
r1 

r5 

r1 
r2 R = 

r1r2 R 

r2 r3 + r4 - r2 r3 r4 

etc. 

Series-parallel reductions have polynomial cost.  



38 



39 



40 



41 



42 

•  Let P be a path. 
•  Let P-up denote the event 

         P-up = “all links in P are up”, 
         Pr(P-up) = ∏link i is in P ri  

•  Since P-up ⇒ system is up, 
         Pr(P-up) ≤ R 

•  Let C be a cut. 
•  Let C-down denote the event 

         C-down = “all links in C are down”, 
         Pr(C-down) = ∏link i is in C (1 - ri)  

•  Since C-down ⇒ system is down, 
         Pr(C-down) ≤ Q = 1 - R 
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•  Again, with P be a path 
and P-up the event “all links in P are up”, we can 
write 
      R = Pr(P-up) + [1 - Pr(P-up)] Pr(sys. up | “at 
                                  least one link in P is down”) 

•  This suggest to sample on a conditional system, to 
estimate the last conditional probability (idea used 
in previous works by the authors). 
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•  Here, we follow another conditioning-based idea coming also 
from previous works (the RVR estimator). 

•  We define an estimator Z associated with our MC method 
which is illustrated here through examples: 

–  if the network is 

–  then 

Z 
r1 

r2 

r3 
= 1 

r1 
r2 

r3 
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–  if the network is 

–  then r1 
r2 

r3 
Z = 0 

r1 
r2 

r3 
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–  if the network is 

–  then r1 
r2 Z = r1r2 

r1 
r2 
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–  then if the network is 

–  then 

•  The remaining case is a K-connected network where there is 
no possible series-parallel reduction and |K | ≥ 2. 

Z = Z 
r1 

r2 r1r2 
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Let N be  

We first select a path*:  
1 2 

Let Li be the event “line i is up”, 
and let Li be the event “line i is down”, i = 1,2. 

__________________ 
* The RVR method used a cut, but the idea is the same. 



49 

•  We partition Ω in the following way: 
      Ω = {L1L2 , L1 , L1L2 } 

Prob. = r1r2  
Prob. = 1 - r1 

Prob. = r1(1 - r2)  

•  Let X be the r.v. “first line down in the path”, i = 1,2, 
with X = 0 if all lines in the path are up. 
•  Let Y = X | X > 0 (Y lives in {1,2}) 
•  We have Pr(Y = 1) = (1 - r1) /(1 - r1r2) 
   and  Pr(Y = 2) = r1(1 - r2)/(1 - r1r2). 
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Z = r1r2  

Z + (1 - r1r2 ) 1{Y  = 1} 

+ (1 - r1r2 ) 1{Y  = 2} Z 

Ω = {L1L2 , L1 , L1L2 } 
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Z = r1r2  

Z + (1 - r1r2 ) 1{Y  = 1} 

+ (1 - r1r2 ) 1{Y  = 2} Z 

to evaluate Z here, 

Ω = {L1L2 , L1 , L1L2 } 
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Z = r1r2  

Z + (1 - r1r2 ) 1{Y  = 1} 

+ (1 - r1r2 ) 1{Y  = 2} Z 

to evaluate Z here, 

we sample Y 

Ω = {L1L2 , L1 , L1L2 } 
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Z = r1r2  

Z + (1 - r1r2 ) 1{Y  = 1} 

+ (1 - r1r2 ) 1{Y  = 2} Z 

If we get for Y value 2, we have a 
series-parallel reducible network, 
so, we do an exact and fast computation. 

Ω = {L1L2 , L1 , L1L2 } 
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Z = r1r2  

Z + (1 - r1r2 ) 1{Y  = 1} 

+ (1 - r1r2 ) 1{Y  = 2} Z 

and this is series-parallel reducible 

If we get value 1, the procedure continues 
recursively from this network. 

Ω = {L1L2 , L1 , L1L2 } 
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•  It consists of generalizing this idea to work with a path and 
a cut simultaneously. 

•  Assume we select a cut C = (l1, l2, l3) and a path P = (l1, l’2, l’3) 
(paper’s notation here). 

•  Denote by Li (resp. by L’i) the event ”link li is up” (resp. “link 
l’i is up”), and by Li (resp. by L’i) the event ”link li is 
down” (resp. ”link l’i is down”). 

•  Consider we partition first Ω into the events {L1L’2L’3,  L1,  
L1L’2,  L1L’2L’3}, that is, the events 

–  “all 3 links in P work”, 
–  “link l1 of P is down” 
–  “in P, link l1 is up and link l’2 is down” 
–  “in P, links l1 and l’2 are up and link l’3 is down” 
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Ω 

L1L’2L’3 L1 L1L’2 L1L’2L’3 
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Ω 

L1L’2L’3 L1 L1L’2 L1L’2L’3 

here, 
system is up 
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•  Now, we refine the partition crossing the previous 
decomposition with the partition {L1L2L3,  L1,  L1L2,  L1L2L3}, 
using now cut C. 
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L1L’2L’3 L1 L1L’2 L1L’2L’3 

L1L2L3 

L1 

L1L2 

L1L2L3 
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L1L’2L’3 L1 L1L’2 L1L’2L’3 

L1L2L3 

L1 

L1L2 

L1L2L3 
Ø 

Ø 

Ø Ø 

Ø 

Ø 

Ø 

Ø 
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L1L’2L’3 L1 L1L’2 L1L’2L’3 

L1L2L3 

L1 

L1L2 

L1L2L3 
Ø 

Ø 

Ø Ø 

Ø 

Ø 

Ø 

Ø 

+ 

- - - 
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L1L’2L’3 L1 L1L’2 L1L’2L’3 

L1L2L3 

L1 

L1L2 

L1L2L3 
Ø 

Ø 

Ø Ø 

Ø 

Ø 

Ø 

Ø 

+ 

- - - 

L1L’2 L1L’2L’3 

L1L2 

L1L2L3 
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L1L’2L’3 L1 L1L’2 L1L’2L’3 

L1L2L3 

L1 

L1L2 

L1L2L3 
Ø 

Ø 

Ø Ø 

Ø 

Ø 

Ø 

Ø 

+ 

- - - 

L1L’2 L1L’2L’3 

L1L2 

L1L2L3 

B’2 B’3 B3 B2 
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L1L’2L’3 L1 L1L’2 L1L’2L’3 

L1L2L3 

L1 

L1L2 

L1L2L3 
Ø 

Ø 

Ø Ø 

Ø 

Ø 

Ø 

Ø 

+ 

- - - 

L1L’2 L1L’2L’3 

L1L2 

L1L2L3 

p2 p3 q3 q2 
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•  Remark: the only sampled variables are the Yk (the auxiliary 
variable at the kth irreducible and not trivial network found 
in the recursive process) 

•  THEOREM 
–  E(Z ) = Q (so, unbiaised estimator) 
–  Var(Z ) ≤ [R - Pr(P-up)][Q - Pr(C-down)] ≤ RQ (so, variance 

reduction) 

•  sum = 0.0 
•  for m = 1, 2, …, M 

–  z = sample(Z) 
–  sum += z 
•  Qre  = sum/M 
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M = 106 samples 

•  r1 = 1 - exp(-1/0.3) ~ 0.964326 

•  r2 = 1 - exp(-1/0.1) ~ 0.999955 

•  r3 = 1 - exp(-1/0.8) ~ 0.713495 

•  r4 = 1 - exp(-1/0.1) ~ 0.999955 

•  r5 = 1 - exp(-1/0.2) ~ 0.993262 

4
3

52

1

(R ~ 0.999929) 

Var(Qstd)/Var’(Qre) ~ 1.95×106 

Var’(Qce)/Var’(Qre) ~ 187 

(Var’(Qx) is the variance 
of the considered estimator x 
of Q) 

a recent cross-entropy-based 
estimator 
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qi = 1 - ri Q Var(Qstd)/ 
Var’(Qre) 

Var’(Qce)/ 
Var’(Qre) 

10-3 ~ 4.00×10-12 ~ 4.49×105 ~ 2.07 

10-6 ~ 4.00×10-18 ~ 4.44×1011 ~ 2.06 

M = 106 samples 
|V | = 9, 
|K | = 4, 
|E | = 12 
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|V | = 36, 
|K | = 4, 
|E | = 60 

M = 106 samples 

qi Q Var(Qstd)/ 
Var’(Qre) 

Var’(Qce)/ 
Var’(Qre) 

10-3 ~ 4.01×10-6 ~ 1.13×105 ~ 1.06 

10-6 ~ 4.00×10-12 ~ 1.11×1011 ~ 1.04 
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•  We varied K (|K | = 2, |K | = 5, |K | = 10) and we considered 
always the case ri = r varying r from 0.99 to 0.1. 

•  Main goal of the experiments: evaluate the improvement of 
working with both a cut and a path, compared to the original 
technique that used only a cut. 

•  For instance, the ratio between the variance of the 
estimator using only a cut and the variance of the new one 
goes from ~ 2 when |K | = 10 and r = 0.1 to ~ 1027 when |K | = 
2 and r = 0.99.  
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Here, we took always the case of |K | = 2 but varied the 
distance between the two terminals (in the picture, that 
distance is 5). 
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•  We also varied ri = r from 0.99 to 0.1. 
•  When the distance is 1, the ratio between the variance of 

the estimator using only a cut and the variance of the new 
one goes from ~ 3.8×103 if r = 0.99 to ~ 9.2×107 if r = 0.1. 

•  At the other extreme, when the distance was 5, the method 
using only a cut was slightly better in the case of r = 0.99; 
for the remaining values of r the ratio ranged in the interval 
~ (2.4 , 4.6). 
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•  The method is simple and efficient (so far it compares well 
with previous proposals, while this must be explored more in 
deep). 

•  It can be extended to more powerful decompositions. 
•  More importantly, the choice of the cut and the path is not 

evident (because of the transformations made to the graphs 
when simplifying them inside the recursive procedure). 
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•  A time-reduction procedure for network 
reliability estimation 

•  Main idea: 
–  again, exploit the specificities of this static 

problem 
–  a version of conditional Monte Carlo 

•  For simplicity, and because we are probably 
close to out of time at this point, we 
consider only the source-to-terminal case 
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•  #failed = 0 
•  for m = 1, 2, …, M 

–  g = sample(G) 
–  if g ∉ U then #failed += 1 

•  Qstd  = #failed/M 
•  Vstd = Qstd(1 – Qstd)/(M - 1) 

The rare event problem when Q « 1 
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•  Internal loop: sampling a graph state (state of 
each edge), and verifying if it belongs or not to 
set U ( DFS search); total complexity is O(|E|). 

•  M iterations; initialization time and final 
computations in O(1). 

•  Total computation time in O(M|E|), linear in # of 
edges and # of replications. 
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•  Imagine we implement the crude Monte 
Carlo procedure in the following way: 
–  first, we build a (huge) table with M rows (e.g. 

M = 109) and |E | + 1 columns 
–  each row corresponds to a replication 
–  row m: 

•  column i: 1 if edge i works at repl. m, 0 otherwise 
•  last column (|E | + 1): 1 if sys. ok, 0 otherwise 

–  then, we count the # of 0 in last column, we 
divide by M and we have our estimator Qstd 
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•  We consider the case of case ri ≈ 1 
•  Look at column i now: full of ‘1’, from time 

to time a ‘0’ 
•  Call Fi the r.v. “first row in the table with a 

‘0’ in column i ” 
•  Assume the table is infinite: in that case, Fi 

is geometric on {1, 2, …} with 
  Pr(Fi = f  ) =  ri

f-1 (1 - ri) 
and 

  E(Fi ) = ri /(1 - ri) 
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•  This suggests the following procedure: 
–  sample the geometric r.v. F1, F2, … and compute 

W = min{F1 , F2,…} 
–  consider that in replications 1, 2, …, W-1, the 

system was operational 
–  for replication W, perform the DFS test 
–  then, start again for each column (edge), 

sampling the next ‘0’ value, then looking for the 
next row with at least one ‘0’… 

•  Formalizing this procedure we can prove 
that it can be seen as an implementation of 
the standard estimator 
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•  For a table with M rows, 
–  each Fi  is sampled, on the average, M/E(Fi ) 

times, thus, the total cost is 

–  in the rare event case, the usual situation is 
(1 - ri)/ri « 1 and even 

                                       « 1 

€ 

€ 

M 1− ri
rii∑

€ 

1− ri
rii∑
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•  # of calls to the DFS procedure? 
–  on the average, M/E(W) times 

•  Since W is also geometric with parameter 
r = r1 r2 … r|E|, the mean cost of the method 
is 

•  For instance, assume ri = 1 – ε 
•  The total mean cost is ~ ε M |E |2 

€ 

M 1− ri
ri

+ | E | 1− r
ri

∑
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•  Dividing the mean cost of the standard 
approach M |E | by the mean cost of this 
more efficient “implementation”, we get 

  1/(ε|E |) 
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•  Consider the following example: 

source = 1 
terminal = 14 
ri = 0.9999 

the new method 
runs ~ 500 times 
faster than crude 
(for the same 
accuracy) 
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•  The procedure can be improved further 
•  For instance, the DFS can be called only if 

the number of ‘0’ in the row is at least 
equal to the breadth of the graph 

•  In the previous example, this leads to an 
improvement factor of ~ 600 
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•  Many other techniques, applications and 
problems, not even mentioned here. 

•  Some randomly chosen examples: 
–  use of Quasi-Monte Carlo techniques 
–  using other types of information 
–  splitting with static models 
–  applications in physics (where “everything was 

invented…”) 
–  … 

•  Slides will be on-line with some added 
bibliography 
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G. Rubino, B. Tuffin (Editors), 

 “Rare Event Simulation 
 Using Monte Carlo Methods” 

John Wiley & Sons, 
278 pages, March 2009. 

http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-0470772697.html 


