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Background

■ Continuous-time Markov chain (CTMC) having n states is represented by (n × n) square matrix
Q ∈ IRn×n having

Q(i, j) ≥ 0 ∀i 6= j and Q(i, i) = −∑j 6=i Q(i, j) ∀i.

■ Initial distribution (row) vector: π0 ∈ IR1×n , where

π0 ≥ 0, π0e = 1, and e is column vector of ones.

■ Transient vector at time t ≥ 0:

πt = π0e
Qt = π0

∑∞
i=0

(Qt)i

i! .

■ Steady-state (or limiting, long-run) vector

π = limt→∞ πt satisfies πQ = 0, πe = 1

whenever it exists; it is also stationary distribution.
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Background (continued)

■ In Kronecker based approach [Dayar’06], Q is:

▲ represented using Kronecker products of smaller matrices
▲ never explicitly generated.

■ Implementation of transient and steady-state solvers can rest on this compact representation,
thanks to existence of:

efficient vector-Kronecker product multiplication algorithm known as
shuffle algorithm [Davio’81].

■ Various algorithms for vector-Kronecker product multiplication based on shuffle algorithm are
devised:

[Benoit-Fernandes-Plateau-Stewart’04b]
[Buchholz-Ciardo-Donatelli-Kemper’00]
[Fernandes-Plateau-Stewart’98ab]
[Plateau-Fourneau’91], [Plateau-Fourneau-Lee’88]

and used as kernels in solvers proposed for different modeling formalisms.
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Background (continued)

■ In practice, Kronecker based representation of Q is obtained using various modeling formalisms:

▲ Compositional Markovian models such as stochastic automata networks (SANs) [Plateau’85,
Plateau-Atif’91, Plateau-Fourneau’91, Stewart’94] and
different classes of superposed stochastic Petri nets [Donatelli’93, Kemper’96]

▲ Hierarchical Markovian models (HMMs) of queueing networks [Buchholz’94a], generalized stochastic
Petri nets (GSPNs) [Buchholz-Kemper’98], or systems of asynchronously communicating stochastic
modules [Campos-Donatelli-Silva’99]

▲ Stochastic process algebras, such as the performance evaluation process algebra (PEPA)
[Hillston-Kloul’01].

■ These modeling formalisms are integrated to various software packages:

▲ Abstract Petri Net Notation toolbox [APNN’04, Bause-Buchholz-Kemper’98]
▲ Performance Evaluation of Parallel Systems software tool

[Benoit-Brenner-Fernandes-Plateau-Stewart’03, PEPS’03]
▲ PEPA Workbench [Clark-Gilmore-Hillston-Thomas’99, PEPA’05]
▲ Stochastic Model checking Analyzer for Reliability and Timing

[Ciardo-Jones-Miner-Siminiceanu’03, SMART’04].
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Background (continued)

■ Transient distribution can be computed through uniformization using vector-Kronecker product
multiplications [Buchholz’94a].

■ Steady-state distribution also needs to be computed using vector-Kronecker product
multiplications [Buchholz’99c,Stewart-Atif-Plateau’95], since direct methods based on complete
factorizations, such as Gaussian elimination, normally introduce new nonzeros which cannot be
accommodated.

■ To deal with the reachable state space rather than the product state space,
one can use:

▲ HMMs [Buchholz’94a]
▲ Matrix diagrams [Ciardo-Miner’99] and representations for specific models

[Haddad-Moreaux’96]
▲ Other approaches [Benoit-Fernandes-Plateau-Stewart’04b, Buchholz’99b,

Buchholz-Ciardo-Donatelli-Kemper’00].

■ Most work is on CTMCs;
very few DTMCs based on Kronecker products discussed in literature.
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Background (continued)

We take an algebraic view and make the assumption that MC at hand:

■ does not have unreachable states
■ is irreducible.

Kronecker (or tensor) product of two (rectangular) matrices A ∈ IRnA×mA

and B ∈ IRnB×mB is written as A ⊗ B and yields the (rectangular) matrix C ∈ IRnAnB×mAmB given
by:

c(iC , jC) = a(iA, jA)b(iB , jB)

with
iC = (iA − 1)nB + iB and jC = (jA − 1)mB + jB

(iA, jA) ∈ {1, 2, . . . , nA} × {1, 2, . . . ,mA}
(iB , jB) ∈ {1, 2, . . . , nB} × {1, 2, . . . ,mB},

where × is the Cartesian product operator.
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Background (continued)

■ In a 2-dimensional representation:

▲ row indices of C ∈ {1, 2, . . . , nA} × {1, 2, . . . , nB}
▲ column indices of C ∈ {1, 2, . . . ,mA} × {1, 2, . . . ,mB}.

■ Ordering of rows and columns of C is lexicographical, since

c(iC , jC) = c((iA, iB), (jA, jB)) = c((iA − 1)nB + iB , (jA − 1)mB + jB).

■ Kronecker product is associative; Kronecker product of H square matrices is:

X = X(1) ⊗ X(2) ⊗ · · · ⊗ X(H) = ⊗H
h=1X

(h),

where

▲ X(h) ∈ IRnh×nh

▲ row/column indices of X(h) ∈ S(h) = {1, 2, . . . , nh} for h = 1, 2, . . . ,H

▲ X ∈ IRn×n with n =
∏H

h=1 nh .
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Background (continued)

H-dimensional state space representation

■ Ordered H-dimensional tuples

(i1, i2, . . . , iH) ∈ ×H
h=1S(h) and (j1, j2, . . . , jH) ∈ ×H

h=1S(h)

used to represent row and column indices of X, respectively.
■ Kronecker product of H square matrices implies:

one-to-one onto mapping between an H-dimensional state space and a one-dimensional state
space that are lexicographically ordered.

■ Kronecker product can be used to define:

MCs having multi-dimensional state spaces.
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Kronecker representation of Q

Assume that H-dimensional CTMC at hand is represented as:

Q = QO + QD, QO =
∑K

k=1

⊗H
h=1 Q

(h)
k , QD = diag(−QOe),

where

■ QO: off-diagonal part of Q (QO ≥ 0)
■ QD: diagonal part of Q (QD ≤ 0)
■ K: # of Kronecker products (or terms) forming QO

■ H: # of factors in each Kronecker product

■ Q
(h)
k ∈ IRnh×nh

Q
(h)
k ≥ 0 for k = 1, 2, . . . ,K and h = 1, 2, . . . ,H

■ diag: diagonal matrix which has its vector argument along its diagonal.
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Kronecker representation of Q (continued)

■ If row/column indices of Q
(h)
k ∈ S(h) = {1, . . . , nh} for k = 1, 2, . . . ,K and h = 1, 2, . . . ,H, then

H-dimensional state space of Q is given by:

S = ×H
h=1S(h).

■ |S| =
∏H

h=1 |S(h)| =
∏H

h=1 nh = n.
■ One-dimensional value of state s ∈ S corresponding to (s1, s2, . . . , sH),

where sh ∈ S(h) for h = 1, 2, . . . ,H, is given by:

s = 1 +
∑H

h=1(sh − 1)
∏H

i=h+1 ni.

■ We will be using one-dimensional and multi-dimensional representations of states interchangeably.
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Kronecker representation of Q (continued)

Space complexity

■ One needs space for:

▲ diagonal matrix QD

▲ matrices in the Kronecker representation of QO,

meaning a floating-point vector of length
∏H

h=1 nh and at most K (sparse) floating-point matrices
of order nh are stored for h = 1, 2, . . . ,H.

■ In the worst case, this amounts to a storage space of n +
∑H

h=1 nzQ(h) floating-point values,

where

nzQ(h): sum of # of nonzeros in Q
(h)
k for k = 1, 2, . . . ,K.

■ QD can also be expressed as a sum of Kronecker products:

QD = −∑K
k=1

⊗H
h=1 diag(Q

(h)
k e).

However, most of the time QD is precomputed and stored explicitly.
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Kronecker representation of Q (continued)

Time complexity

Complexity of a vector multiplication with QO, which consists of K Kronecker product terms, is given
by:

K

H
∏

h=1

nh + 2

K
∑

k=1

H
∏

h=1

nh

H
∑

l=1

nz
Q

(l)

k

/nl = K

H
∏

h=1

nh + 2

H
∏

h=1

nh

H
∑

l=1

(

K
∑

k=1

nz
Q

(l)

k

)

/ nl

= n(K + 2

H
∑

h=1

nzQ(h)/nh)

floating-point arithmetic operations [Fernandes-Plateau-Stewart’98a], where:

nz
Q

(l)
k

: # of nonzeros in Q
(l)
k for k = 1, 2, . . . ,K and l = 1, 2, . . . ,H.
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Kronecker representation of Q (continued)

■ Each nonzero element of the matrix Q
(h)
k in Q is located by its row and column indices, which are

members of S(h).
■ More generally, a nonzero element of Q

(h)
k may be a function of states in state spaces other than

S(h), thus a function of non-local states.
■ This phenomenon is a by-product of the modeling process and has been utilized in the SAN

modeling formalism:

▲ These nonzero elements are referred to as functional transitions.
▲ Corresponding Kronecker products are said to be generalized [Plateau’85].

■ It is possible to remove functional transitions from a sum of generalized Kronecker products by
introducing new terms [Plateau-Fourneau’91] and/or factors
[Benoit-Fernandes-Plateau-Stewart’04b], but functional transitions enable a more compact
Kronecker representation with fuller factor matrices
[Chung-Ciardo-Donatelli-He-Plateau-Stewart-Sulaiman-Yu’04].

■ We do not consider functional transitions, but indicate that results extend to generalized
Kronecker products whereever appropriate.
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Kronecker representation of Q (continued)

■ Let level 0 denote highest level at which Q is perceived as single block of order n =
∏H

h=1 nh.
■ For l = 0, 1, . . . ,H, we have:

bl =
∏l

h=1 n2
h and ol =

∏H
h=l+1 nh,

where

bl: # of blocks at level l
ol: order of blocks at level l.

■ There are
√

bl blocks each of order ol along the diagonal of Q.
■ Block ((i1, i2, . . . , il), (j1, j2, . . . , jl)) of Q at level l:

Q((i1, i2, . . . , il), (j1, j2, . . . , jl)) =
K
∑

k=1

(

l
∏

h=1

q
(h)
k (ih, jh)

)(

H
⊗

h=l+1

Q
(h)
k

)

+ QD((i1, i2, . . . , il), (j1, j2, . . . , jl))

for l = 0, 1, . . . ,H.
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Kronecker representation of Q (continued)

■ QD((i1, i2, . . . , il), (j1, j2, . . . , jl)) is block ((i1, i2, . . . , il), (j1, j2, . . . , jl)) of QD.

QD((i1, i2, . . . , il), (j1, j2, . . . , jl)) = 0 if (i1, i2, . . . , il) 6= (j1, j2, . . . , jl),
meaning it is off-diagonal block at level l.

■ l = 0 yields (block) Q and l = H yields scalar (block):

q((i1, i2, . . . , iH), (j1, j2, . . . , jH)) =

K
∑

k=1

H
∏

h=1

q
(h)
k (ih, jh)

+ qD((i1, i2, . . . , iH), (j1, j2, . . . , jH)).

■ Nested and recursive structure associated with Q is also valid in the presence of functional

transitions.
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An example

Consider following matrices for a 4-dimensional problem (each dimension with 2 states) having 7
terms of Kronecker products:

Q
(1)
1 =

(

1
)

, Q
(1)
2 = Q

(1)
3 = Q

(1)
4 = Q

(1)
5 = I, Q

(1)
6 =

(

1
)

, Q
(1)
7 =

(

10

)

Q
(2)
1 = I, Q

(2)
2 =

(

1

)

, Q
(2)
3 = Q

(2)
4 = Q

(2)
5 = Q

(2)
6 = I, Q

(2)
7 =

(

1
)

Q
(3)
1 = Q

(3)
2 = I, Q

(3)
3 =

(

1
)

, Q
(3)
4 = I, Q

(3)
5 =

(

1
)

, Q
(3)
6 =

(

10

)

, Q
(3)
7 = I

Q
(4)
1 = Q

(4)
2 = Q

(4)
3 = I, Q

(4)
4 =

(

1
)

, Q
(4)
5 =

(

10

)

, Q
(4)
6 = I, Q

(4)
7 = I

Then,

Q =
∑7

k=1

⊗4
h=1 Q

(h)
k + QD.
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An example (continued)

1
1
1
1

1
1
1
2

1
1
2
1

1
1
2
2

1
2
1
1

1
2
1
2

1
2
2
1

1
2
2
2

2
1
1
1

2
1
1
2

2
1
2
1

2
1
2
2

2
2
1
1

2
2
1
2

2
2
2
1

2
2
2
2

Q =































−3 1 1 1
−12 10 1 1

−12 1 10 1
−11 10 1

1 −4 1 1 1
1 −13 10 1 1

1 −13 1 10 1
1 −12 10 1

10 −12 1 1
10 −21 10 1

10 −11 1
10 −10

1 −3 1 1
1 −12 10 1

1 −2 1
1 −1































■ # of floating-point values stored in Kronecker representation is 10 for matrices and 16 for
diagonal, thus totaling 26; whereas, it is 60 for flat representation.

■ Discrepancy between Kronecker and flat representations becomes substantial for larger values of
the state space size, n.
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Preprocessing

■ Objective is to expedite analysis of MCs based on Kronecker products.
■ There are three techniques that can be used to put Kronecker representation into more favorable

form before solvers take over.
■ These are:

▲ Reordering
▲ Grouping
▲ Lumping

QEST 2009 13 September 2009 – 19 / 57
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Reordering and grouping

(K,H) = (1, 1) corresponds to a flat representation.

■ As H ↘ 1, Kronecker representation becomes flatter,
implying increased storage requirements.

■ If K were 1, then Q could be analyzed along each dimension independently
⇒ K is normally assumed to be larger than 1.

Make K as small as possible without changing H

⇒ # of terms in QO decreases, Q
(h)
k become fuller.

Effects of reordering and grouping of factors of Kronecker products on convergence and space
requirements of iterative methods have been investigated [Buchholz-Dayar’04a, Buchholz-Dayar’05,
Dayar’00, Gusak-Dayar’01, Uysal-Dayar’98], but a broad, systematic study seems to be lacking.
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Reordering and grouping (continued)

Reordering in MCs based on Kronecker products refers to:

1. either permuting factors of Kronecker products
2. or renumbering states in state spaces of factors.

Latter corresponds to symmetric permutation of factor matrices Q
(h)
k

for k = 1, 2, . . . ,K associated with renumbered state space S(h).

■ Reordering of first kind may be used to reduce overhead associated with generalized
vector-Kronecker product multiplication [Benoit-Fernandes-Plateau-Stewart’04b,
Fernandes-Plateau-Stewart’98b].

■ Reordering of both kinds can change nonzero structure of underlying MC
⇒ can affect convergence of iterative methods [Dayar’98].

Symmetrically permute nonzero structure of underlying MC to more favorable form for iterative
method of choice:

use nonzero structure of
∑K

k=1 Q
(h)
k , which indicates how factor h contributes to nonzero

structure of QO for h = 1, 2, . . . ,H.

QEST 2009 13 September 2009 – 21 / 57
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Reordering and grouping (continued)

Grouping in MCs based on Kronecker products refers to collapsing same adjacent factors in each
Kronecker product. Hence:

■ factors in each Kronecker product are reduced by same number
■ state space sizes of factors are increased.

Results [Benoit-Fernandes-Plateau-Stewart’04b, Fernandes-Plateau-Stewart’98ab] show that in some
cases grouping may:

■ reduce state space if it had unreachable states
■ decrease overhead associated with functional transitions
■ decrease number of terms in the Kronecker representation.

Group factors with functional dependencies among each other.

In the absence of functional transitions, group as many factors as possible given available memory
starting from highest indexed factor
⇒ flatter representation for diagonal blocks at a particular level, which is useful in certain

iterative methods.
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Lumping

Lumpability is a property possessed by some MCs which, if conditions are met, may be used to reduce
a large state space S to a smaller state space Slumped.

Find a partitioning of S such that, when states in each partition are lumped (or aggregated) to
form a single state, the resulting MC described by Slumped has equivalent behavior to original
chain.

We refer to two kinds of lumpability:

1. ordinary lumpability
2. exact lumpability.

Here we give definitions for CTMCs.
Equivalent definitions can be stated for DTMCs.
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Lumping (continued)

Q is said to be ordinarily lumpable with respect to a partitioning S = ∪iSi and Si ∩ Sj = ∅ for all
i 6= j if for all Si ⊂ S and all si, s

′

i ∈ Si

∑

sj∈Sj
q(si, sj) =

∑

sj∈Sj
q(s

′

i, sj) for all Sj ⊂ S.

Q is said to be exactly lumpable with respect to a partitioning S = ∪iSi and Si ∩ Sj = ∅ for all i 6= j
if for all Si ⊂ S and all si, s

′

i ∈ Si

∑

sj∈Sj
q(sj, si) =

∑

sj∈Sj
q(sj, s

′

i) for all Sj ⊂ S.

■ Ordinary lumpability refers to a partitioning of S in which sums of transition rates from each state
in a partition to a(nother) partition are the same.

■ Exact lumpability refers to a partitioning of S in which sums of transition rates from all states in a
partition into each state of a(nother) partition are the same.

QEST 2009 13 September 2009 – 24 / 57

Lumping (continued)

■ On ordinarily lumped MC, one can compute:

▲ performance measures defined over Slumped.

■ On exactly lumped MC, one can compute:

▲ steady-state performance measures defined over S
▲ transient performance measures defined over Slumped

▲ transient performance measures defined over S if states in exactly lumpable partitions have
same initial probabilities.

Since MCs satisfy row sum property rather than column sum property,
exact lumpability is more difficult to be satisfied than ordinary lumpability.

QEST 2009 13 September 2009 – 25 / 57
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Lumping (continued)

■ Lumpability can be investigated within each state space S(h) that defines the Kronecker
representation of QO for h = 1, 2, . . . ,H independently:

▲ For S(h), detection of ordinary and exact lumpability through partition refinement
[Buchholz’00b] requires a time complexity of O(nzQ(h) log nh) and a space complexity of
O(nzQ(h)).

▲ Lumped Kronecker representation may be obtained by replacing each of S(h) and its

corresponding matrices Q
(h)
k for k = 1, 2, . . . ,K with equivalent lumped ones.

■ Lumpability can be investigated among S(h) that are replicated (or identical) with respect to
Kronecker representation of QO [Brenner-Benoit-Fernandes-Plateau’04a]:

▲ Replication is very specific symmetry in Kronecker representation.
▲ Ordinary lumpability of replicated state spaces is shown in the presence of functional

transitions.
▲ Performance measures of interest over Slumped can be computed.
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Lumping (continued)

■ Lumpability can be investigated among S(h) by considering dependencies and matrix properties in
Kronecker representation [Gusak-Dayar-Fourneau’03ab]:

▲ Sufficient conditions that satisfy ordinary lumpability are specified by identifying ordinarily
lumpable partitionings induced by nested block structure of generalized Kronecker
representation.

▲ Enables detection of ordinarily lumpable partitionings in which blocks are composed of
multiple (non-identical) state spaces but individual state spaces cannot be lumped by
themselves.

▲ An iterative steady-state solution method which is able to compute performance measures
over S is given for CTMCs and DTMCs in the presence of functional transitions.

Neither of the last two approaches:

■ are completely automated
■ use a Kronecker representation for the lumped MC
■ possess a proper complexity analysis.
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Block iterative methods 28 / 57

Splitting the smaller matrices

Consider splitting smaller matrices that form Kronecker products as in [Uysal-Dayar’98]:

Q
(h)
k = D

(h)
k + U

(h)
k + L

(h)
k

for k = 1, 2, . . . ,K and h = 1, 2, . . . ,H,

where

D
(h)
k : diagonal part of Q

(h)
k

U
(h)
k : strictly upper-triangular part of Q

(h)
k

L
(h)
k : strictly lower-triangular part of Q

(h)
k .

Observe that:
D

(h)
k ≥ 0, U

(h)
k ≥ 0, L

(h)
k ≥ 0

since Q
(h)
k ≥ 0.
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Splitting the smaller matrices (continued)

Then using Lemma A.8 in [Uysal-Dayar’98], which rests on:

■ associativity of Kronecker product
■ distributivity of Kronecker product over matrix addition,

it is possible to express QO of Q at level l = 0, 1, . . . ,H as

QO = QU(l) + QL(l) + QDU(l) + QDL(l),

where

QU(l) =
∑K

k=1

∑l
h=1

(

⊗h−1
f=1 D

(f)
k

)

⊗ U
(h)
k ⊗

(

⊗H
f=h+1 Q

(f)
k

)

QL(l) =
∑K

k=1

∑l
h=1

(

⊗h−1
f=1 D

(f)
k

)

⊗ L
(h)
k ⊗

(

⊗H
f=h+1 Q

(f)
k

)

correspond respectively to strictly block upper- and lower-triangular parts of QO at level l.
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Splitting the smaller matrices (continued)

QDU(l) =
∑K

k=1

∑H
h=l+1

(

⊗h−1
f=1 D

(f)
k

)

⊗ U
(h)
k ⊗

(

⊗H
f=h+1 Q

(f)
k

)

QDL(l) =
∑K

k=1

∑H
h=l+1

(

⊗h−1
f=1 D

(f)
k

)

⊗ L
(h)
k ⊗

(

⊗H
f=h+1 Q

(f)
k

)

correspond respectively to strictly upper- and lower-triangular parts of block diagonal of QO at level l.
Observe that:

QU(l) ≥ 0, QL(l) ≥ 0, QDU(l) ≥ 0, QDL(l) ≥ 0.

l = 0 ⇒ QO is a single block with QU(0) = QL(0) = 0

l = H ⇒ a point-wise partitioning of QO

with QDU(H) = QDL(H) = 0.

Hence, for iterative methods based on block partitionings l = 1, 2, . . . ,H − 1 should be used.
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Example (continued)

Consider block partitioning of the 4-dimensional problem at level 1 for which:

■ l = 1
■ b1 = 4
■ Q is viewed as (2 × 2) block matrix with blocks of order o1 = 8.

QU(1) =
7
∑

k=1

U
(1)
k ⊗ Q

(2)
k ⊗ Q

(3)
k ⊗ Q

(4)
k and QL(1) =

7
∑

k=1

L
(1)
k ⊗ Q

(2)
k ⊗ Q

(3)
k ⊗ Q

(4)
k ,

QU(1) + QL(1) =





























1
1

10 1
10 1

1
1

10 1
10 1

10
10

10
10




























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Example (continued)

The strictly upper- and lower-triangular parts of the block diagonal are given by:

QDU(1) =
7
∑

k=1

D
(1)
k ⊗ U

(2)
k ⊗ Q

(3)
k ⊗ Q

(4)
k +

7
∑

k=1

D
(1)
k ⊗ D

(2)
k ⊗ U

(3)
k ⊗ Q

(4)
k

+
7
∑

k=1

D
(1)
k ⊗ D

(2)
k ⊗ D

(3)
k ⊗ U

(4)
k ,

QDL(1) =
7
∑

k=1

D
(1)
k ⊗ L

(2)
k ⊗ Q

(3)
k ⊗ Q

(4)
k +

7
∑

k=1

D
(1)
k ⊗ D

(2)
k ⊗ L

(3)
k ⊗ Q

(4)
k

+
7
∑

k=1

D
(1)
k ⊗ D

(2)
k ⊗ D

(3)
k ⊗ L

(4)
k ,
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Example (continued)

There are
√

b1 = 2 blocks along the diagonal:

QDU(1) + QDL(1) =



















































1 1

10 1

1

1 1 1

1 10 1

1 1

1

1 1

10 1

1

1 1 1

1 10 1

1 1

1



















































QEST 2009 13 September 2009 – 33 / 57

17



Block iterative methods for Kronecker products

Let Q be irreducible and split at level l as:

Q = QO + QD = QU(l) + QL(l) + QDU(l) + QDL(l) + QD = M − N,

where M is nonsingular (i.e., M−1 exists).
Then:

■ power
■ block Jacobi over-relaxation (BJOR)
■ block successive over-relaxation (BSOR)

methods are based on different splittings of Q, and each satisfies

π(m+1)M = π(m)N for m = 0, 1, . . .

with sequence of approximations π(m+1) to π, where

■ π(0) > 0 is initial approximation such that π(0)e = 1
■ T = NM−1 is iteration matrix.
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Block iterative methods for Kronecker products (continued)

Splittings corresponding to power, BJOR, and (forward) BSOR methods are:

MPower = −αI

NPower = −α(I + Q/α)

MBJOR = (QD + QDU(l) + QDL(l))/ω

NBJOR = (1 − ω)(QD + QDU(l) + QDL(l))/ω − QU(l) − QL(l)

MBSOR = (QD + QDU(l) + QDL(l))/ω + QU(l)

NBSOR = (1 − ω)(QD + QDU(l) + QDL(l))/ω − QL(l),

where

α ∈ [maxs∈S |qD(s, s)|,∞): uniformization parameter of Power
ω ∈ (0, 2): relaxation parameter of BJOR and BSOR.
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Block iterative methods for Kronecker products (continued)

Point versus block methods

■ Power works at level l = H since it is point method
■ BJOR and BSOR reduce to block Jacobi (BJacobi) and block Gauss-Seidel (BGS) for ω = 1
■ BJOR and BSOR become (point) JOR and (point) SOR for l = H.

Convergence

■ Since Q is singular and assumed to be irreducible, ρ(T ) = 1.
■ In order to ensure convergence,

T should not have other eigenvalues with magnitude one.
■ For converging approximations, magnitude of eigenvalue of T closest to one determines rate of

convergence.

Power

π(m+1) = π(m) + π(m)QD/α + π(m)QO/α.
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Block iterative methods for Kronecker products (continued)

BJOR

π(m+1)(QD + QDU(l) + QDL(l)) =
(1 − ω)π(m)QD + (1 − ω)π(m)QDU(l) + (1 − ω)π(m)QDL(l) − ωπ(m)QU(l) − ωπ(m)QL(l).

√
bl independent, ns linear systems each of order ol and nonzero right-hand side

■ If there is space:

▲ Generate and factorize in sparse storage ns blocks:

Q((i1, i2, . . . , il), (i1, i2, . . . , il)) =
∑K

k=1

(

∏l

h=1 q
(h)
k (ih, ih)

)(

⊗H

h=l+1 Q
(h)
k

)

+ QD((i1, i2, . . . , il), (i1, i2, . . . , il)) for (i1, i2, . . . , il) ∈ ×l
h=1S(h)

along the diagonal of (QD + QDU(l) + QDL(l)) at outset.

▲ Solve the | ×l
h=1 S(h)| =

√
bl systems directly at each iteration.

■ Otherwise, use (block) iterative method, such as BJOR,

since off-diagonal parts of diagonal blocks given by
∑K

k=1

(

∏l
h=1 q

(h)
k (ih, ih)

) (

⊗H
h=l+1 Q

(h)
k

)

are

sums of Kronecker products.
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Block iterative methods for Kronecker products (continued)

BSOR

π(m+1)(QD + QDU(l) + QDL(l) + ωQU(l)) =
(1 − ω)π(m)QD + (1 − ω)π(m)QDU(l) + (1 − ω)π(m)QDL(l) − ωπ(m)QL(l).

Block upper-triangular linear system with
√

bl blocks of order ol along diagonal of ns coefficient
matrix (QD + QDU(l) + QDL(l) + ωQU(l)) and nonzero right-hand side.

■ Recursive algorithm is given for ns linear system with lower-triangular coefficient matrix in the
form of sum of Kronecker products and nonzero right-hand side [Uysal-Dayar’98]. Such a system
arises in backward SOR. A version of the same algorithm for backward BSOR is also discussed.

■ Iterative block upper-triangular solution algorithm for BSOR is also possible [Buchholz-Dayar’04a]
and block row-oriented version is preferable in the presence of functional transitions.
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Block iterative methods for Kronecker products (continued)

Algorithm 1. Iterative block upper-triangular solution at level l for MCs based on Kronecker

products

b = (1 − ω)π(m)QD + (1 − ω)π(m)QDU(l) + (1 − ω)π(m)QDL(l) − ωπ(m)QL(l);

For row of blocks (i1, i2, . . . , il) = (1, 1, . . . , 1) to (n1, n2, . . . , nl) lexicographically,
Solve π(m+1)((i1, i2, . . . , il))Q((i1, i2, . . . , il), (i1, i2, . . . , il)) = b((i1, i2, . . . , il));

For column of blocks (j1, j2, . . . , jl) > (i1, i2, . . . , il),
b((j1, j2, . . . , jl)) = b((j1, j2, . . . , jl))

−ωπ(m+1)((i1, i2, . . . , il))QU(l)((i1, i2, . . . , il), (j1, j2, . . . , jl)).

■ In BSOR, ns diagonal blocks Q((i1, i2, . . . , il), (i1, i2, . . . , il)) must be solved in lexicographical
order.

■ After each block is solved for unknown subvector π(m+1)((i1, i2, . . . , il)),
b is updated by multiplying computed subvector with corresponding row of blocks above diagonal.

■ BSOR at level l reduces to SOR if QDL(l) = 0.
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Block iterative methods for Kronecker products (continued)

■ Block iterative solvers, sometimes called two-level iterative solvers, have still not been incorporated into
most analysis packages based on Kronecker representations although they are shown to be more effective
than point solvers on many test cases [Buchholz-Dayar’04a, Uysal-Dayar’98].

■ To the contrary of block partitionings considered for sparse MCs [Dayar-Stewart’00], block partitionings of
Kronecker products are nested and recursive due to lexicographical ordering of states. Hence, there tends to
be more common structure among diagonal blocks of a MC expressed as sum of Kronecker products.

▲ Diagonal blocks having identical off-diagonal parts and diagonals which differ by multiple of identity
can share and work with factorization of only one diagonal block [Buchholz-Dayar’04a]. This saves not
only from time spent for factorization of diagonal blocks at the outset, but also from space.

▲ Three-level version of BSOR can be considered for MCs based on Kronecker products in which diagonal
blocks that are too large to be factorized are solved using BSOR [Buchholz-Dayar’04a,
Gusak-Dayar’01].

■ One can alter nonzero structure of underlying MC of Kronecker representation by reordering factors and
states of factors so as to make it more suitable for block iterative methods. Power and JOR methods will
not benefit from such reordering.
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Multilevel methods 41 / 57

Multilevel methods

■ Aggregation-disaggregation steps are coupled with various iterative methods for MCs based on
Kronecker products to accelerate convergence [Buchholz’94a, Buchholz’99bce].

■ Iterative aggregation-disaggregation (IAD) method for MCs based on Kronecker products and its
adaptive version,
which analyzes aggregated systems for those parts where error is estimated to be high, are
proposed [Buchholz’97, Buchholz’99a].

■ Adaptive IAD method is improved through recursive definition and called multilevel (ML)
[Buchholz’00a].
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The simple multilevel method for Kronecker products

Let:

■ S(l) = ×H
h=l+1S(h) for l = 0, 1, . . . ,H

■ mapping f(l) : S(l) −→ S(l+1) represent aggregation of dimension (l + 1) (i.e., the state space

S(l+1)) so that
states in S(l) are mapped to states in S(l+1); note:

▲ S(0) = S
▲ S(H) = {1}.

■ aggregated CTMCs Q̃(m,l) with state spaces S(l) be defined at levels l = 1, 2, . . . ,H with

Q̃(m,0) = Q for iteration m
■ Power be used as smoother (or accelerator):

▲ η(m,l) times before aggregation
▲ ν(m,l) times after disaggregation

with α(m,l) ∈ [maxs(l)∈S(l)
|q̃(m,l)(s(l), s(l))|,∞) at level l for iteration m.
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The simple multilevel method for Kronecker products (continued)

Then ML iteration matrix at level l for iteration m is given by:

TML
(m,l) = (I + Q̃(m,l)/α(m,l))

η(m,l)R(l)T
ML
(m,l+1)Px(m,l)

(I + Q̃(m,l)/α(m,l))
ν(m,l)

and satisfies π(m+1,l) = π(m,l)T
ML
(m,l) for m = 0, 1, . . . , where

x(m,l) = π(m,l)(I + Q̃(m,l)/α(m,l))
η(m,l)

r(l)(s(l), s(l+1)) =

{

1 if f(l)(s(l)) = s(l+1)

0 otherwise
for s(l) ∈ S(l) and s(l+1) ∈ S(l+1)

px(m,l)
(s(l+1), s(l)) =







x(m,l)(s(l))
∑

s(l)∈S(l),f(l)(s(l))=s(l+1)
x(m,l)(s(l))

if f(l)(s(l)) = s(l+1)

0 otherwise

for s(l+1) ∈ S(l+1) and s(l) ∈ S(l),
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The simple multilevel method for Kronecker products (continued)

π(m,l+1) = x(m,l)R(l) and Q̃(m,l+1) = Px(m,l)
Q̃(m,l)R(l).

At iteration m, recursion ends and backtracking starts when:

■ Q̃(m,l+1) is the last aggregated CTMC and solved exactly to give

T(m,l+1) = eπ(m+1,l+1),

where π(m+1,l+1)Q̃(m,l+1) = 0 and π(m+1,l+1)e = 1.

Level to end recursion depends on available memory since there must be space to store and factorize
Q̃(m,l+1) at that level.

When π(0,0) > 0:

■ aggregated CTMCs Q̃(m,l+1) are irreducible [Buchholz’00a]
■ ML method has been observed to converge if a sufficient number of smoothings are performed to

improve π(m,l) at each level.

QEST 2009 13 September 2009 – 44 / 57

The simple multilevel method for Kronecker products (continued)

To the contrary of block iterative methods, ML iteration matrix changes from iteration to iteration
⇒ method is non-stationary.

■ (|S(l)| × |S(l+1)|) aggregation operator, R(l), is:

▲ constant
▲ need not be stored since it is defined by f(l).

■ At level l, |S(l)| =
∏H

h=l+1 nl states represented by (H − l)-tuples are mapped to the

|S(l+1)| =
∏H

h=l+2 nl states represented by (H − l − 1)-tuples by aggregating the leading

dimension S(l+1) in S(l).

▲ Corresponds to aggregation based on contiguous and non-interleaved block partitioning if
states in S(l) were ordered anti-lexicographically.

■ (|S(l+1)| × |S(l)|) disaggregation operator, Px(m,l)
:

▲ depends on x(m,l)

▲ has the nonzero structure of RT
(l).
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The simple multilevel method for Kronecker products (continued)

■ Px(m,l)
can be stored in a vector of length |S(l)| since it has one nonzero per column by definition.

■ These vectors amount to total storage of
∑H−1

l=0

∏H
h=l+1 nh floating-point values if recursion

terminates at level H.

Q̃(m,l+1) can be expressed as a sum of Kronecker products [Buchholz’00a] using:

■ at most K vectors of length |S(l+1)|
■ matrices corresponding to factors (l + 2) through H.

Element s(l+1) of vector corresponding to kth term in Kronecker representation at level (l + 1) for
iteration m is:

a(m,l+1),k(s(l+1)) =

(

∑

s(l)∈S(l),f(l)(s(l))=s(l+1)
x(m,l)(s(l)) a(m,l),k(s(l)) (eT

s(l)(l+1)Q
(l+1)
k e)

)

π(m,l+1)(s(l+1))

for s(l+1) ∈ S(l+1) and k = 1, 2, . . . , K,

where a(m,0),k = e, s(l)(l + 1) ∈ S(l+1), and es(l)(l+1) is s(l)(l + 1)st column of I.
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The simple multilevel method for Kronecker products (continued)

Q̃(m,l+1) =
∑K

k=1 diag(a(m,l+1),k)
⊗H

h=l+2 Q
(h)
k −∑K

k=1 diag(a(m,l+1),k)
⊗H

h=l+2 diag(Q
(h)
k e)

■ Second summation returns diagonal matrix which sums rows of Q̃(m,l+1) to 0.
■ No need to store a(m,0),k = e for k = 1, 2, . . . ,K at level 0.

■ If recursion ends at level H, then Q̃(m,H) is (1 × 1) CTMC equal to 0, and need not be stored
since its steady-state vector is 1.

No need to store a(m,l+1),k = e for those k which:

■ either have single Q
(h)
k 6= I for h = 1, 2, . . . ,H,

■ or have all Q
(h)
k = I for h = l + 2, . . . ,H.

K vectors at particular level have same length,
but vary in length from

∏H
h=2 nh at level 1 to nH at level (H − 1),

implying a storage requirement of at most K
∑H−1

l=1

∏H
h=l+1 nh floating-point values to facilitate the

Kronecker representation of the aggregated CTMCs.

Grouping of factors will further reduce storage requirement for vectors.
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Example (continued)

Consider the 4-dimensional problem with

π(0,0) = e/16, α(0,0) = 21, and η(0,0) = ν(0,0) = 1.

Then, x(0,0) = π(0,0)(I + Q̃(0,0)/21) yields

x(0,0) = (19 11 21 13 27 19 29 21 21 13 23 15 29 21 31 23)/336

R(0) =































1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1






























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Example (continued)

Px(0,0)
=































19
40

21
40

11
24

13
24

21
44

23
44

13
28

15
28

27
56

29
56

19
40

21
40

29
60

31
60

21
44

23
44































.

■ 16 states represented by 4-tuples in S(0) = S are mapped to 8 states represented by 3-tuples in
S(1).

■ For instance, states (1, 1, 1, 1) and (2, 1, 1, 1) are mapped to (1, 1, 1),
whereas states (1, 1, 1, 2) and (2, 1, 1, 2) are mapped to (1, 1, 2).
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Example (continued)

Using R(0), we obtain starting approximation at level 1 as

π(0,1) = (40 24 44 28 56 40 60 44)/336.

7 vectors used to represent aggregated CTMC at level 1 are computed as

a(0,1),1 = (19/40 11/24 21/44 13/28 27/56 19/40 29/60 21/44),

a(0,1),2 = a(0,1),3 = a(0,1),4 = a(0,1),5 = e,

a(0,1),6 = (19/40 11/24 21/44 13/28 27/56 19/40 29/60 21/44),

a(0,1),7 = (210/44 130/24 230/44 150/28 290/56 210/40 310/60 230/44).

and aggregated CTMC is expressed as

Q̃0,1 = Px(0,0)
Q̃(0,0)R(0)

=
7
∑

k=1

diag(a(0,1),k)
4
⊗

h=2

Q
(h)
k −

7
∑

k=1

diag(a(0,1),k)
4
⊗

h=2

diag(Q
(h)
k e).

QEST 2009 13 September 2009 – 50 / 57

Example (continued)

We may very well set a(0,1),1 = e as suggested before, because effect of a(0,1),1

in first term of first summation will be to diagonal of Q̃0,1

(since Q
(2)
1 = Q

(3)
1 = Q

(4)
2 = I), but this effect will be cancelled by first term of second summation

(since diag(Q
(2)
1 e) = diag(Q

(3)
1 e) = diag(Q

(4)
2 e) = I). Hence:

1

1

1

1

1

2

1

2

1

1

2

2

2

1

1

2

1

2

2

2

1

2

2

2

Q̃(0,1) =































−

290
40

40
40

40
40

210
40

−

394
24

240
24

24
24

130
24

210
44

−

484
44

44
44

230
44

130
28

−

280
28

150
28

56
56

−

168
56

56
56

56
56

40
40

−

480
40

400
40

40
40

60
60

290
60

−

410
60

60
60

44
44

210
44

−

254
44































.

QEST 2009 13 September 2009 – 51 / 57

26



A class of multilevel methods for Kronecker products

ML method discussed follows a V-cycle at each iteration and uses Power as smoother.

■ State spaces S(h) are aggregated according to fixed ordering h = 1, 2, . . . ,H.
■ To the contrary of ML method for sparse MCs [Horton-Leutenegger’94]:

▲ definition of aggregated state spaces follows naturally from Kronecker representation
▲ aggregated CTMCs can also be represented using Kronecker products.

Class of ML methods in [Buchholz-Dayar’04b] are:

■ capable of using JOR and SOR as smoothers
■ performing W- and F-cycles inspired by multigrid
■ aggregating state spaces in cyclic and adaptive orderings.
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A class of multilevel methods for Kronecker products (continued)

Numerical experiments proved ML methods to be very strong, robust, and scalable solvers for MCs
based on Kronecker products.

■ Convergence properties of ML methods are discussed in [Buchholz-Dayar’07].
■ It is not clear how behavior would be affected if block iterative methods are used as smoothers.

BJOR and BSOR should normally not use a direct method for the solution of diagonal blocks
when employed as smoothers with ML method, since aggregated CTMC at each level changes
from iteration to iteration and factorization may be too time consuming to offset.

Efficient algorithm that finds nearly completely decomposable (NCD) partitioning of S in the presence
of functional transitions for user specified decomposability parameter is given
[Gusak-Dayar-Fourneau’01]. Since IAD using NCD partitionings has certain rate of convergence
guarantees, the algorithm may be useful in the context of ML methods to determine loosely coupled
dimensions to be aggregated first in given iteration.
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Preconditioned projection methods

Projection (or Krylov subspace) methods are non-stationary iterative methods in which approximate
solutions satisfying various constraints are extracted from small dimensional subspaces.

■ Basic operation is vector-Kronecker product multiplication.
■ Compared to block iterative methods, they require a larger number of supplementary vectors of

length n.
■ Should be used with preconditioners to result in effective solvers.

At each iteration of preconditioned projection method, row residual vector, r, is used as right-hand
side of linear system:

zM = r

to compute preconditioned row residual vector, z, where M is preconditioning matrix.
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Preconditioned projection methods (continued)

Objective of preconditioning is:

to improve error in approximate solution vector at that iteration.

M should approximate Q in some sense,
yet solution of linear systems involving M should be cheap.

■ To result as effective solvers, projection methods for sparse MCs should be used with
preconditioners, such as those based on incomplete LU (ILU) factorizations [Dayar-Stewart’00].

■ It is still not clear how one can devise ILU-type preconditioners for MCs that are based on
Kronecker products.

Preconditioners for Kronecker structured MCs:

■ truncated Neumann series [Stewart’94, Stewart-Atif-Plateau’95]
■ cheap and separable preconditioner [Buchholz’99c]
■ circulant preconditioners for a specific class of problems [CC00]
■ Kronecker product approximate preconditioner [Langville-Stewart’04abc].
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Preconditioned projection methods (continued)

[Buchholz’99ce, Langville-Stewart’04bc, Stewart-Atif-Plateau’95]: room for research regarding
effective preconditioners for MCs based on Kronecker products.

BSOR preconditioner

Block iterative methods are preconditioned power methods for which preconditioning matrix is M .

■ BSOR preconditioner using M is proposed [Buchholz-Dayar’05].
■ To the contrary of BSOR preconditioner for sparse MCs, BSOR preconditioner based on

Kronecker products has rich structure induced by lexicographical ordering of states.

Two-level BSOR preconditioned projection methods in which diagonal blocks are solved exactly are
competitive with block iterative methods and ML methods.

■ JOR, BJOR, and SOR preconditioners can be compared with existing preconditoners for MCs
based on Kronecker products.

■ ML methods are candidates for preconditioning projection methods.
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Conclusion

■ MCs based on Kronecker products have rich structure, which is nested and recursive.
■ Preprocessing techniques that take advantage of this rich structure to expedite analysis are:

▲ reordering
▲ grouping
▲ lumping.

■ Software packages working with Kronecker products should include:

▲ block iterative methods based on splittings
▲ multilevel methods
▲ projection methods preconditioned with block iterative methods.

■ Implementation requires intricate programming with dynamically allocated, relatively complex data
structures, needing time, careful testing, and tuning.
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