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Stationary distribution π = (0.885, 0.071, 0.044).



Cyber-Physical Systems

“To analyze a cyber-physical system, such as a
pacemaker, we need to consider the discrete
software controller interacting with the
physical world, which is typically modelled by
differential equations”

Rajeev Alur (CACM, 2013)



Hybrid Automata: Various Continuous Dynamics

Hybrid automaton = states + variables x ∈ Rk

• ẋ = 1 ⇒ timed automata

• ẋ = c ⇒ rectangular hybrid automata

• ẋ = Ax ⇒ linear hybrid automata

• . . .

o-minimal flows + strong resets ⇒ reachability decidable

Is this location a trap?

ẋ = 3x − y
ẏ = x − 5y

x := 2
y := 4

x ≥ 10
∧ y ≤ 2?
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• ẋ = Ax ⇒ linear hybrid automata

• . . .

o-minimal flows + strong resets ⇒ reachability decidable

Is this location a trap?
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• ẋ = Ax ⇒ linear hybrid automata

• . . .

o-minimal flows + strong resets ⇒ reachability decidable

Is this location a trap?
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Reachability for Continuous Linear Dynamical Systems

Is this location a trap?
ẋ = 3x − y
ẏ = x − 5y

x := 2
y := 4

x ≥ 10
∧ y ≤ 2?
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Is ever more likely to be a Bear
market than a Bull market:

∃t (P(t)Bear ≥ P(t)Bull) ?
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ẋ = Ax

⇒ x(t) = exp(At)x(0)
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Reachability for Continuous Linear Dynamical Systems

Let f : R≥0 → R be given as above, with all coefficients algebraic.

BOUNDED-ZERO Problem

Instance: f and bounded interval [a, b]
Question: Is there t ∈ [a, b] such that f (t) = 0?

ZERO Problem

Instance: f
Question: Is there t ∈ R≥0 such that f (t) = 0?

• Decidability open! [Bell, Delvenne, Jungers, Blondel 2010]
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Related Work

A lot of work since 1920s on the zeros of exponential polynomials

f (z) =
m∑
j=1

Pj(z)eλjz

(Polya, Ritt, Tamarkin, Kac, Voorhoeve, van der Poorten, . . . )
but mostly on distribution of complex zeros.

CONTINUOUS-ORBIT Problem

The problem of whether the trajectory x(t) = eAtx(0) reaches a
given target point was shown to be decidable by Hainry (2008)
and in PTIME by Chen, Han and Yu (2015).
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Theorem (Bell, Delvenne, Jungers, Blondel 2010)

In dimension 2, BOUNDED-ZERO and ZERO are decidable.

Theorem (arXiv:1507.03632, 2015)

In dimension 3, BOUNDED-ZERO and ZERO are decidable.

Theorem (arXiv:1506.00695, 2015)

Assuming Schanuel’s Conjecture, BOUNDED-ZERO is decidable in
all dimensions.

It turns out that this result (in fact, a powerful generalisation of it)
had already been discovered (but never published) in the early
1990s by Macintyre and Wilkie!

[Angus Macintyre, personal communication, July 2015]
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Reachability for Continuous Linear Dynamical Systems

Theorem (arXiv:1507.03632, 2015)

In dimension 8 or less, ZERO reduces to BOUNDED-ZERO.

Theorem (arXiv:1506.00695, 2015)

In dimension 9 (and above), decidability of ZERO would entail
major breakthroughs in Diophantine approximation—the
Diophantine approximation type of α would be computable to
within arbitrary precision.
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Schanuel’s Conjecture

Theorem (Lindemann-Weierstrass)

If a1, . . . , an are algebraic numbers linearly independent over Q,
then ea1 , . . . , ean are algebraically independent.

Schanuel’s Conjecture

If z1, . . . , zn are complex numbers linearly independent over Q then
some n-element subset of {z1, . . . , zn, ez1 , . . . , ezn} is algebraically
independent.

Example

By Schanuel’s conjecture some two-element subset of
{1, πi , e1, eπi} is algebraically independent.
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Can this situation arise?



The BOUNDED-ZERO Problem

Real-valued exponential polynomial f (t) =
m∑
j=1

Pj(t)eλj t

t*

f(t)

t
a b

Easily! For example, f (t) = 2 + e it + e−it .



Laurent Polynomials and Factorisation

Example

Write f (t) = 2 + e it + e−it in the form f (t) = P(e it) for the
Laurent polynomial

P(z) = 2 + z + z−1 .

Factorisation P(z) = (1 + z)(1 + z−1) induces a factorisation

f (t) = (1 + e it)︸ ︷︷ ︸
f1(t)

(1− e it)︸ ︷︷ ︸
f2(t)

Common zeros of f1 and f2 are tangential zeros of f

Idea: factorise f . Noting that factors may be complex-valued!
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The Real Case

Any exponential polynomial f (t) can be written

f (t) = P(t, ea1t , . . . , eamt)

with
P ∈ C[x , x±11 , . . . , x±1m ]

and {a1, . . . , am} a set of real and imaginary algebraic numbers
that is linearly independent over Q.

Lemma

Assuming Schanuel’s conjecture, if f is real valued and P is
irreducible then f has no tangential zeros.

Complex case requires some new ideas . . .
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The Unbounded Case

“there are known unknowns; that is to say we know there are some
things we do not know. But there are also unknown unknowns –
the ones we don’t know we don’t know.”
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a3 + · · ·
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Real Algebraic Numbers

Theorem

The continued fraction expansion of a real quadratic irrational
number is periodic.

√
389 = [19, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38, . . .]

What about numbers of degree ≥ 3?

3
√

2 = [1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1

3, 4, 1, 1, 2, 14, 3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1, . . .]

Lang and Trotter: “no significant departure from random
behaviour”
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What about numbers of degree ≥ 3?

3
√

2 = [1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1

3, 4, 1, 1, 2, 14, 3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1, . . .]

Lang and Trotter: “no significant departure from random
behaviour”



An Open Problem

“ [. . . ] no continued fraction development
of an algebraic number of higher degree
than the second is known. It is not even
known if such a development has bounded
elements.”

A. Khinchin. 1949.

“Is there an algebraic number of degree higher
than two whose simple continued fraction has
unbounded partial quotients? Does every such
number have unbounded partial quotients?”

R. K. Guy, 2004
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A Mathematical Obstacle at Dimension 9

Given x = [a0, a1, a2, . . .], define S(x) = supn∈N an.

Theorem (arXiv:1506.00695, 2015)

If the ZERO PROBLEM is decidable at dimension 9 then

{x ∈ R ∩ A : S(x) <∞}

is recursively enumerable.

Remark

Perhaps this set is recursive—it may even be ∅ or R ∩ A. However
proving recursive enumerability would be a significant achievement.
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Diophantine Approximation

How well can one approximate a real number x with rationals?∣∣∣x − m

n

∣∣∣

Theorem (Dirichlet 1842)

There are infinitely many integers m, n such that
∣∣∣x − m

n

∣∣∣ < 1

n2
.

S(x) <∞ if and only if there exists ε > 0 such that∣∣∣x − m

n

∣∣∣ < ε

n2

has no solutions.

Relate this to the existence of zeros of order-9 exponential
polynomial f (t) with terms e ixt and e it .
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The ZERO Problem

ZERO Problem

Instance: f
Question: Is there t ∈ R≥0 such that f (t) = 0?

Theorem (arXiv:1507.03632, 2015)

In dimension 8 or less, ZERO reduces to BOUNDED-ZERO.

Diophantine approximation

Kronecker’s Theorem on simultaneous
Diophantine approximation.

Baker’s Theorem on lower bounds for
linear forms in logarithms of algebraic
numbers.

Model theory of the reals

o-minimality of (R, <,+,×, ex , 0, 1).



Conclusion and Perspectives



The Discrete Case

A linear recurrence sequence is a sequence 〈u0, u1, u2, . . .〉 of
integers such that there exist constants a1, . . . , ak , such that

un+k = a1un+k−1 + a2un+k−2 + . . .+ akun

for all n ≥ 0.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros of a linear recurrence sequence is semi-linear:

{n : un = 0} = F ∪ A1 ∪ . . . ∪ A`

where F is finite and each Ai is a full arithmetic progression.

Theorem (Berstel and Mignotte 1976)

In Skolem-Mahler-Lech, the infinite part (arithmetic progressions
A1, . . . , A`) is fully constructive.
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The Skolem Problem

Skolem Problem

Does ∃n such that un = 0 ?

“It is faintly outrageous that this
problem is still open; it is saying that we
do not know how to decide the Halting

Problem even for ‘linear’ automata!”

Terence Tao

“. . . a mathematical embarrassment . . . ”

Richard Lipton
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Wrapping Things Up

Continuous Skolem Problem

Does ∃t such that f (t) = 0 ?

Not a mathematical embarrassment!

Even the bounded problem is hard (apparently).

Formidable “mathematical obstacle” at dimension 9 in the
unbounded case.

The infinite-zeros problem is also hard.

Diophantine-approximation techniques unavoidable.
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