
A Stroll Down Memory Lane

Carey Williamson

Department of Computer Science

University of Calgary

QEST 2016 Quebec City August 23-25, 2016

Speed Scaling

Speed Scaling: Inherent Tradeoffs

• Minimize power consumption P

▫ Minimize energy cost ε

▫ Minimize heat, wear, etc.

• Minimize response time T

▫ Minimize delay

• Maximize job throughput

Run

faster:
less

delay

Run

slower:
less

energy

• Dynamic Speed Scaling: adapt service rate to the current state of
the system to balance energy consumption and performance.

2

Motivation and Context
 The ICT ecosystem is responsible for 10% of

the world’s energy consumption [Mills 2013]
Data centers account for roughly 2% of

global energy consumption; growing at a
rate of approximately 6% per annum
 The most energy-intensive component of

any computer is its processor [Skrenes 2016]
90% of energy usage when active (72W/80W)
48% of energy usage when idle (3.1W/6.4W)

Need for more energy-efficient computing

Page 3

3

Main Messages (preview)
There is a broad and diverse set of

literature on speed scaling systems over
the past 20+ years

There is a dichotomy between theoretical
work and systems work on speed scaling

Modern processors provide surprisingly
rich functionality for speed scaling that is
not yet well exploited by systems software

Page 4

4

Talk Outline

 Introduction and Motivation

Background and Literature Review

Review of Key Results and Insights

Recent Results and Contributions

Decoupled Speed Scaling

Turbocharged Speed Scaling

Experimental Measurements

Conclusions and Future Directions

Page 5

5

Background: Theory and Systems

Theoretical Research Systems Research

• Goal: optimality

• Domains: CPU, parallel systems

• Methods: proofs, complexity,
competitive analysis, queueing
theory, Markov chains, worst
case, asymptotics, simulation

• Metrics: E[T], E[ε], combo,
slowdown, competitive ratio

• Power: P = sα (1 ≤ α ≤ 3)

• Schedulers: PS, SRPT, FSP, YDS

• Speed scalers: job-count-based

• Venues: SIGMETRICS, PEVA,
Performance, INFOCOM, OR

• Goal: practicality

• Domains: CPU, disk, network

• Methods: DVFS, power meter,
measurement, benchmarking,
simulation, power gating,
over-clocking, simulation

• Metrics: response time,
energy, heat, utilization

• Power: P = a Ceff V2 f

• Schedulers: FCFS, RR, FB

• Speed scalers: threshold-based

• Venues: SIGMETRICS, SOSP,
OSDI, ISCA, MASCOTS, TOCS

6

Typical Modeling Assumptions

 Single-server queue for CPU service
 Initial batch of n jobs at time 0
 Job sizes known in advance
Dynamic CPU speed scaling model
 Job-count based: s = f(n) = n1/α (1 ≤ α ≤ 3)

Continuous and unbounded speeds
No cost for context-switches or speed changes

Memory-less property (arrivals and service)
Metrics: response time, energy cost

Page 7

7

Literature #1: The Classics
 [Kelly 1979] Reversibility and Stochastic

Networks, Wiley
 [Kleinrock 1975] Queueing Systems, Volume 1:

Theory, Wiley
 [Schrage 1968] “A Proof of the Optimality of the

SRPT Discipline”, Operations Research
 [Weiser et al. 1994] “Scheduling for Reduced

CPU Energy”, OSDI (and Mobile Computing)
 [Yao, Demers, Shenker 1995] “A Scheduling

Model for Reduced CPU Energy”, FOCS

Page 8

8

Literature #2: Scheduling
 [Bansal and Harchol-Balter 2001] “Analysis of SRPT

Scheduling: Investigating Unfairness”, SIGMETRICS
 [Friedman and Henderson 2003] “Fairness and

Efficiency in Web Server Protocols”, SIGMETRICS
 [Harchol-Balter et al. 2002] “Asymptotic

Convergence of Scheduling Policies with Respect to
Slowdown”, IFIP Performance
 [Rai et al. 2003] “Analysis of LAS Scheduling for Job

Size Distributions with High Variance”,
SIGMETRICS
 [Wierman and Harchol-Balter 2003] “Classifying

Scheduling Policies with Respect to Unfairness in an
M/GI/1”, SIGMETRICS

Page 9

9

Literature #3: Speed Scaling
 [Albers 2010] “Energy-Efficient Algorithms”, CACM

 [Albers et al. 2014] “Speed Scaling with Parallel Processors”,
Algorithmica

 [Bansal et al. 2007] “Speed Scaling to Manage Energy and
Temperature”, JACM

 [Bansal et al. 2009a] “Speed Scaling with an Arbitrary Power
Function”, SIAM

 [Bansal et al. 2009b] “Speed Scaling for Weighted Flow Time”, SIAM

 [Andrew, Lin, Wierman 2010] “Optimality, Fairness, and Robustness in
Speed Scaling Designs”, SIGMETRICS

 [Elahi et al. 2012] “Decoupled Speed Scaling: Analysis and Evaluation”,
QEST (PEVA 2014)

 [Elahi et al. 2014] “Turbo-charged Speed Scaling: Analysis and
Evaluation”, MASCOTS

 [Wierman et al. 2009] “Power-Aware Speed Scaling in Processor
Sharing Systems”, IEEE INFOCOM Page 10

10

Literature #4: Inexact Job Sizes

 [Dell’Amico et al. 2014] “Revisiting Size-based
Scheduling with Estimated Job Sizes”, MASCOTS
 [Dell’Amico et al. 2016] “PSBS: Practical Size-Based

Scheduling”, IEEE Trans. on Computers
 [Lu et al. 2004] “Size-based Scheduling Policies with

Inaccurate Scheduling Information”, MASCOTS
 [Rai et al. 2003] “Analysis of LAS Scheduling for Job

Size Distributions with High Variance”,
SIGMETRICS
 [Wierman et al. 2008] “Scheduling Despite Inexact

Job Size Information”, SIGMETRICS

Page 11

11

Literature #5: Systems
 [Hahnel et al. 2012] “Measuring Energy Consumption for Short Code

Paths Using RAPL”, PER

 [Meisner et al. 2009] “PowerNap: Eliminating Server Idle Power”,
ASPLOS

 [Schroeder et al. 2006] “Web Servers Under Overload: How Scheduling
Can Help”, TOIT

 [Skrenes et al. 2016] “Experimental Calibration and Validation of a
Speed Scaling Simulator”, MASCOTS

 [Snowdon et al. 2009] “Koala: A Platform for OS-level Power
Management”, EuroSys

 [Snowdon et al. 2007] “Accurate Online Prediction of Processor and
Memory Energy Usage under Voltage Scaling”, Embedded Software

 [Spiliopoulos 2012] “Power-Sleuth: A Tool for Investigating Your
Program’s Power Behaviour”, MASCOTS

Page 12

12

Talk Outline

 Introduction and Motivation

Background and Literature Review

Review of Key Results and Insights

Recent Results and Contributions

Decoupled Speed Scaling

Turbocharged Speed Scaling

Experimental Measurements

Conclusions and Future Directions

Page 13

13

Key Results: Single-Speed World

PS is the gold standard for fairness

Asymptotic convergence of slowdown for
all work-conserving scheduling policies

SRPT is “Sometimes Unfair”

YDS is optimal for energy consumption

FSP dominates PS for response time

Page 14

14

Fair Sojourn Protocol (single-speed world)
• Compute the completion time

under PS

• Sort the jobs based on their
virtual completion times

• Execute the job with the
earliest PS completion time

PS

FSP

c1

Completion times
under PS

c2c3c4

• FSP: Fair Sojourn Protocol
[Friedman and Henderson, 2003]

Dominance over PS: No job finishes
later under FSP than it does under PS.
In fact, some (most!) jobs finish earlier
under FSP than under PS.

15

E
[T

(x
)]

 /
 x

PS

x

Dynamic Speed Scaling: Decisions

Which job to serve? At what speed?
?

16

FCFS

FSP

PS

Biased towards big jobs

Biased towards small jobs

Treats all jobs the same

Jobs that run when the queue is larger run faster
[Andrew, Lin and Wierman, 2010]

Dynamic Speed Scaling: Fairness

Fair and near-optimal

SRPT

17

Key Results: Speed Scaling World

Speed scaling exacerbates unfairness

No policy can be optimal, robust, and fair

Asymptotic convergence of slowdown
property no longer holds

FSP’s dominance of PS breaks under
coupled speed scaling

FSP’s dominance of PS is restored under
decoupled speed scaling

Page 18

18

Talk Outline

 Introduction and Motivation

Background and Literature Review

Review of Key Results and Insights

Recent Results and Contributions

Decoupled Speed Scaling

Turbocharged Speed Scaling

Experimental Measurements

Conclusions and Future Directions

Page 19

19

FSP with dynamic speed scaling

• Simple example

• Two jobs arrive at time 0

• Both jobs are of size 1

• Speed: s(n) = n
PS

FSP

0

Finishes
later under

FSP

Dominance
breaks!

time1

20

Research Questions

How to restore dominance property of FSP
under dynamic speed scaling?

Decoupled Speed Scaling [QEST 2012]

Turbocharged Speed Scaling [MASCOTS 2014]

Which approach is better? By how much?

Page 21(Joint work with Maryam Elahi and co-supervisor Philipp Woelfel)

How to preserve dominance? (1)

• Decoupled speed scaling

• Run at the speed of PS
▫ Preserves dominance

▫ Speeds are not affected by
scheduling decisions

• sPS (n) = nPS

• sFSP (.) = sps (n) = nps

PS

FSP

0 time1

22

Decoupled Speed Scaling Idea

Run virtual PS in background

Drive FSP with same speeds that PS used

FSP-PS uses FSP scheduling, but speed
depends on occupancy of the virtualized
PS system, and not that of FSP itself

Page 23

23

Decoupled Speed Scaling [QEST 2012]

Advantages:
Exactly same speeds as PS
Exactly same power consumption as PS
Much better mean response time than PS
Dominance property (preserves fairness)

Disadvantages:
“Unnatural”
Difficult to implement
Need to compute external speed schedule

Page 24

24

Time

System
Speed

1

0 2

PS Schedule (speed-scaling world, α = 1)

2

3

1 3 4 5 6 7 8

Example: 3 jobs of sizes {1, 2, 5} at time 0

Page 25

25

Time

System
Speed

1

0 2

FSP Schedule (speed-scaling world, α = 1)

2

3

1 3 4 5 6 7 8

Problem!
6.333…

Example: 3 jobs of sizes {1, 2, 5} at time 0

Page 26

26

Time

System
Speed

1

0 2

T-FSP Schedule (speed-scaling world, α = 1)

2

3

1 3 4 5 6 7 8

Example: 3 jobs of sizes {1, 2, 5} at time 0

Page 27

27

Single Batch Case

•

FSP PS

28

Key Analytical Results

• General case:

• Special case: α = 1

bn = 1 + wi

n – i + 1i = 1

n - 1

Σwn

1

(n-i) wi

f(n-i+1)

n-i+1

f(n-i)

n-i
bn = 1 +

i = 1

n

Σ

i = 1

n

Σ (
f(n-i+1)

1
-

wi
-

1

f(n-i)

)

()

29

Insights and Observations

 Turbocharging rate can never be less than 1

 For a batch of n jobs, the turbocharging rate:

 Tends to increase with n

 Depends directly on sizes wi of the first n-1 jobs

 Depends inversely on the size wn of the last job

 Additional observations:

 Only relative job sizes matter (not absolute sizes)

 Worst case is homogeneous job sizes

 Rate bounded by Harmonic numbers (α = 1)

 Larger α value makes turbocharging rate lower

 Greater variability in job sizes is beneficial

30

Is turbocharging enough?

•

NO!
FSP PS

31

Example: 4 jobs of sizes {1, 1, 1, 20} at time 0

1.028

Problem!

21.083

Problem!

1

0 2

2

3

1 4 206 8 10 12 14 16 18

4

PS Schedule (speed-scaling world, α = 1)

1

0 2

2

3

1 4 206 8 10 12 14 16 18

4

FSP Schedule (speed-scaling world, α = 1)

3

1

0 2

2

1 4 206 8 10 12 14 16 18

4

T-FSP Schedule (speed-scaling world, α = 1)

32

Critical Job

Need to identify the critical job within the
batch (i.e., needs highest turbocharging rate)
 Start service of the batch at this rate until the

critical job is completed (exactly on time)
 Service rate for the rest of the batch can then

be reduced, based on the remaining jobs and
their PS completion deadlines (virtual batch)
We call this envelope-based turbocharging

Page 33

33

Virtual Batches

The idea of virtual batches can also be
used to handle dynamic job arrivals

At point of new arrival, the new job
competes with old jobs that are either
done, partially done, or not yet started

Re-order jobs based on remaining sizes,
and re-compute turbocharging rates

Jobs PS FSP

Page 34

34

Simulation Evaluation

Effect of scheduling policy (PS, FSP)
Effect of speed scaling policy
Effect of α (1 ≤ α ≤ 3)
Effect of job size variability
Simple batch workloads (n=10, CoV={L,M,H})
Dynamic online arrivals (n=100…1000)

Metrics: response time and energy cost
Comparison to decoupled speed scaling
Comparison to YDS approach

Page 35

35

Simulation Results: Example

PSFSP-PS

FSP

T-FSP

YDS

Page 36

36

Summary (so far)

Naïve turbocharging of FSP won’t work
Envelope-based turbocharging can work
Promising approach, and perhaps more

practical than decoupled speed scaling
Energy costs are slightly higher though

Cognate work: experimental evaluation
and comparison of speed scaling policies

Page 37

37

Typical Modeling Assumptions

 Single-server queue for CPU service
 Initial batch of n jobs at time 0
 Job sizes known in advance
Dynamic CPU speed scaling model
 Job-count based: s = f(n) = n1/α (1 ≤ α ≤ 3)

Continuous and unbounded speeds
No cost for context-switches or speed changes

Memory-less property (arrivals and service)
Metrics: response time, energy cost

Page 38

38

Experimental Results [Skrenes 2016]

Page 39

39

 Micro-benchmarking experiments by MSc student Arsham Skrenes

 Fine-grain energy measurements using RAPL MSRs

 Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor

 12 discrete speeds ranging from 1200 MHz to 2300 MHz

 Reported results are the mean from 10 replications (error < 2%)

 Ubuntu Linux

 Default governors:

▫ performance: use max frequency available

▫ powersave: use min frequency available

▫ ondemand: dynamic using up/down thresholds

▫ conservative: like ondemand, but gradual increase

▫ userspace: user-defined control

Page 40

40

Frequency
(MHz)

PP0
(W)

PKG
(W)

Context
Switch (us)

Mode
Switch (ns)

Speed
Switch (us)

2301 (3300) 11.5 15.3 1.140 44.8 0.76

2300 5.4 9.2 1.634 64.2 1.09

2200 5.0 8.9 1.708 67.0 1.14

2100 4.8 8.6 1.808 70.2 1.20

2000 4.6 8.4 1.898 73.7 1.26

1900 4.5 8.3 1.999 78.3 1.32

1800 4.3 8.0 2.118 81.9 1.38

1700 4.1 7.9 2.213 86.7 1.47

1600 3.9 7.6 2.369 92.1 1.56

1500 3.7 7.5 2.526 98.6 1.67

1400 3.5 7.3 2.709 105.3 1.81

1300 3.3 7.1 2.886 113.4 1.93

1200 3.1 6.9 3.167 123.1 2.09

Speed Scaling Results [Skrenes 2016]

Policy Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

PS 14.57 14.49 76.80 131.50 46.23 30.10 199.99 372.98 166.15 38.05 562.47 1184.36

FSP-PS 14.57 1.21 76.77 131.60 46.21 3.85 199.41 372.36 166.08 13.84 560.35 1180.83

YDS 14.55 1.21 76.49 130.93 45.80 3.82 198.83 369.88 163.12 13.59 560.94 1170.05

Page 41

41

Homogeneous Job Sizes Linear Job Sizes Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz

Speed Scaling Results [Skrenes 2016]

Policy Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.10 199.99 372.98 166.15 38.05 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 3.85 199.41 372.36 166.08 13.84 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 3.82 198.83 369.88 163.12 13.59 560.94 1170.05

Page 42

42

Homogeneous Job Sizes Linear Job Sizes Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz

Speed Scaling Results [Skrenes 2016]

Policy Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.16 199.99 372.98 166.15 38.05 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 16.33 199.41 372.36 166.08 13.84 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 17.81 198.83 369.88 163.12 13.59 560.94 1170.05

Page 43

43

Homogeneous Job Sizes Linear Job Sizes Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz

Speed Scaling Results [Skrenes 2016]

Policy Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.16 199.99 372.98 166.15 38.10 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 16.33 199.41 372.36 166.08 25.43 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 17.81 198.83 369.88 163.12 27.15 560.94 1170.05

Page 44

44

Homogeneous Job Sizes Linear Job Sizes Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz

Speed Scaling Results [Skrenes 2016]

Policy Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.16 199.99 372.98 166.15 38.10 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 16.33 199.41 372.36 166.08 25.43 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 17.81 198.83 369.88 163.12 27.15 560.94 1170.05

Page 45

45

Homogeneous Job Sizes Linear Job Sizes Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz

Observation 1: Decoupled speed scaling (FSP-PS) provides a significant response
time advantage over PS, for the “same” energy costs

Speed Scaling Results [Skrenes 2016]

Policy Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.16 199.99 372.98 166.15 38.10 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 16.33 199.41 372.36 166.08 25.43 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 17.81 198.83 369.88 163.12 27.15 560.94 1170.05

Page 46

46

Homogeneous Job Sizes Linear Job Sizes Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz

Observation 2: The response time advantage of FSP-PS decreases as job size
variability increases

Speed Scaling Results [Skrenes 2016]

Policy Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.16 199.99 372.98 166.15 38.10 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 16.33 199.41 372.36 166.08 25.43 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 17.81 198.83 369.88 163.12 27.15 560.94 1170.05

Page 47

47

Homogeneous Job Sizes Linear Job Sizes Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz

Observation 3: FSP-PS has a slight energy advantage over PS because of fewer
context switches between jobs

Speed Scaling Results [Skrenes 2016]

Policy Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

Time

(s)

E[T]

(s)

PP0

(J)

PKG

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.16 199.99 372.98 166.15 38.10 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 16.33 199.41 372.36 166.08 25.43 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 17.81 198.83 369.88 163.12 27.15 560.94 1170.05

Page 48

48

Homogeneous Job Sizes Linear Job Sizes Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz

Observation 4: YDS has the lowest energy consumption among these policies
(even better than expected due to discretization effect, and no speed changes)

Talk Outline

 Introduction and Motivation

Background and Literature Review

Review of Key Results and Insights

Recent Results and Contributions

Decoupled Speed Scaling

Turbocharged Speed Scaling

Experimental Measurements

Conclusions and Future Directions

Page 49

49

Summary and Conclusions
There is a broad and diverse set of

literature on speed scaling systems over
the past 20+ years

There is a dichotomy between theoretical
work and systems work on speed scaling

Modern processors provide surprisingly
rich functionality for speed scaling that is
not yet well exploited by systems software

Page 50

50

Future Directions
Cost function for speed scaling optimization

Redefining the benchmark for fairness

Extending PSBS to speed scaling scenario

Autoscaling effects and overload regimes

Practical schedulers and speed scalers for
modern operating systems that better exploit
the available hardware features

Speed scaling policies on multi-core systems

Page 51

51

The End

Thank you!

Questions?

Page 52

52

