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Speed Scaling: Inherent Tradeoffs

• Minimize power consumption P

▫ Minimize energy cost ε

▫ Minimize heat, wear, etc.

• Minimize response time T

▫ Minimize delay

• Maximize job throughput 

Run 

faster: 
less

delay

Run 

slower:
less

energy

• Dynamic Speed Scaling: adapt service rate to the current state of 
the system to balance energy consumption and performance.
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Motivation and Context
 The ICT ecosystem is responsible for 10% of 

the world’s energy consumption [Mills 2013]
Data centers account for roughly 2% of 

global energy consumption; growing at a 
rate of approximately 6% per annum
 The most energy-intensive component of 

any computer is its processor [Skrenes 2016]
90% of energy usage when active (72W/80W)
48% of energy usage when idle (3.1W/6.4W)

Need for more energy-efficient computing
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Main Messages (preview)
There is a broad and diverse set of 

literature on speed scaling systems over 
the past 20+ years

There is a dichotomy between theoretical 
work and systems work on speed scaling

Modern processors provide surprisingly 
rich functionality for speed scaling that is 
not yet well exploited by systems software
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Talk Outline

 Introduction and Motivation

Background and Literature Review

Review of Key Results and Insights

Recent Results and Contributions

Decoupled Speed Scaling

Turbocharged Speed Scaling

Experimental Measurements 

Conclusions and Future Directions
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Background: Theory and Systems

Theoretical Research Systems Research

• Goal: optimality

• Domains: CPU, parallel systems

• Methods: proofs, complexity, 
competitive analysis, queueing
theory, Markov chains, worst 
case, asymptotics, simulation

• Metrics: E[T], E[ε], combo, 
slowdown, competitive ratio

• Power: P = sα (1 ≤ α ≤ 3)

• Schedulers: PS, SRPT, FSP, YDS

• Speed scalers: job-count-based

• Venues: SIGMETRICS, PEVA, 
Performance, INFOCOM, OR

• Goal: practicality

• Domains: CPU, disk, network

• Methods: DVFS, power meter, 
measurement, benchmarking, 
simulation, power gating, 
over-clocking, simulation

• Metrics: response time, 
energy, heat, utilization

• Power: P = a Ceff V2 f 

• Schedulers: FCFS, RR, FB

• Speed scalers: threshold-based

• Venues: SIGMETRICS, SOSP, 
OSDI, ISCA, MASCOTS, TOCS

6



Typical Modeling Assumptions

 Single-server queue for CPU service
 Initial batch of n jobs at time 0
 Job sizes known in advance
Dynamic CPU speed scaling model
 Job-count based: s = f(n) = n1/α (1 ≤ α ≤ 3)

Continuous and unbounded speeds
No cost for context-switches or speed changes

Memory-less property (arrivals and service)
Metrics: response time, energy cost
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Key Results: Single-Speed World

PS is the gold standard for fairness

Asymptotic convergence of slowdown for 
all work-conserving scheduling policies

SRPT is “Sometimes Unfair”

YDS is optimal for energy consumption

FSP dominates PS for response time
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Fair Sojourn Protocol (single-speed world)
• Compute the completion time 

under  PS

• Sort the jobs based on their  
virtual completion times

• Execute the job with the 
earliest PS completion time

PS

FSP

c1

Completion times 
under PS

c2c3c4

• FSP: Fair Sojourn Protocol 
[Friedman and Henderson, 2003] 

Dominance over PS: No job finishes 
later under FSP than it does under PS. 
In fact, some (most!) jobs finish earlier 
under FSP than under PS.
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Dynamic Speed Scaling: Decisions

Which job to serve? At what speed?
?
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FCFS

FSP

PS

Biased towards big jobs

Biased towards small jobs

Treats all jobs the same

Jobs that run when the queue is larger run faster
[Andrew, Lin and Wierman, 2010]

Dynamic Speed Scaling: Fairness 

Fair and near-optimal

SRPT
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Key Results: Speed Scaling World

Speed scaling exacerbates unfairness

No policy can be optimal, robust, and fair

Asymptotic convergence of slowdown 
property no longer holds

FSP’s dominance of PS breaks under 
coupled speed scaling

FSP’s dominance of PS is restored under 
decoupled speed scaling
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FSP with dynamic speed scaling

• Simple example

• Two jobs arrive at time 0

• Both jobs are of size 1 

• Speed: s(n) = n
PS

FSP

0

Finishes 
later under 

FSP

Dominance 
breaks!

time1
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Research Questions

How to restore dominance property of FSP 
under dynamic speed scaling?

Decoupled Speed Scaling [QEST 2012]

Turbocharged Speed Scaling [MASCOTS 2014]

Which approach is better? By how much?
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How to preserve dominance? (1)

• Decoupled speed scaling

• Run at the speed of PS
▫ Preserves dominance

▫ Speeds are not affected by 
scheduling decisions

• sPS (n) = nPS

• sFSP (.) = sps (n) = nps

PS

FSP

0 time1
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Decoupled Speed Scaling Idea

Run virtual PS in background

Drive FSP with same speeds that PS used

FSP-PS uses FSP scheduling, but speed 
depends on occupancy of the virtualized 
PS system, and not that of FSP itself
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Decoupled Speed Scaling [QEST 2012]

Advantages:
Exactly same speeds as PS
Exactly same power consumption as PS
Much better mean response time than PS
Dominance property (preserves fairness)

Disadvantages:
“Unnatural”
Difficult to implement
Need to compute external speed schedule
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Time

System
Speed

1

0 2

PS Schedule (speed-scaling world, α = 1)

2

3

1 3 4 5 6 7 8

Example: 3 jobs of sizes {1, 2, 5} at time 0
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Time

System
Speed

1

0 2

FSP Schedule (speed-scaling world, α = 1)

2

3

1 3 4 5 6 7 8

Problem!
6.333…

Example: 3 jobs of sizes {1, 2, 5} at time 0
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Time

System
Speed

1

0 2

T-FSP Schedule (speed-scaling world, α = 1)

2

3

1 3 4 5 6 7 8

Example: 3 jobs of sizes {1, 2, 5} at time 0
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Single Batch Case

•

FSP PS   
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Key Analytical Results

• General case:

• Special case: α = 1

bn = 1 + wi

n – i + 1i = 1

n - 1

Σwn

1

(n-i) wi

f(n-i+1)

n-i+1

f(n-i)

n-i
bn = 1 + 

i = 1

n

Σ

i = 1

n

Σ (
f(n-i+1)

1
-

wi
-

1

f(n-i)

)

( )
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Insights and Observations

 Turbocharging rate can never be less than 1

 For a batch of n jobs, the turbocharging rate:

 Tends to increase with n

 Depends directly on sizes wi of the first n-1 jobs

 Depends inversely on the size wn of the last job

 Additional observations:

 Only relative job sizes matter (not absolute sizes)

 Worst case is homogeneous job sizes

 Rate bounded by Harmonic numbers (α = 1)

 Larger α value makes turbocharging rate lower

 Greater variability in job sizes is beneficial
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Is turbocharging enough? 

•

NO!
FSP PS   
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Example: 4 jobs of sizes {1, 1, 1, 20} at time 0

1.028

Problem!

21.083

Problem!

1

0 2

2

3

1 4 206 8 10 12 14 16 18

4

PS Schedule (speed-scaling world, α = 1)

1

0 2

2

3

1 4 206 8 10 12 14 16 18

4

FSP Schedule (speed-scaling world, α = 1)

3

1

0 2

2

1 4 206 8 10 12 14 16 18

4

T-FSP Schedule (speed-scaling world, α = 1)
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Critical Job

Need to identify the critical job within the 
batch (i.e., needs highest turbocharging rate)
 Start service of the batch at this rate until the 

critical job is completed (exactly on time)
 Service rate for the rest of the batch can then 

be reduced, based on the remaining jobs and 
their PS completion deadlines (virtual batch)
We call this envelope-based turbocharging
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Virtual Batches

The idea of virtual batches can also be 
used to handle dynamic job arrivals

At point of new arrival, the new job 
competes with old jobs that are either 
done, partially done, or not yet started

Re-order jobs based on remaining sizes, 
and re-compute turbocharging rates

Jobs PS FSP
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Simulation Evaluation

Effect of scheduling policy (PS, FSP)
Effect of speed scaling policy
Effect of α (1 ≤ α ≤ 3)
Effect of job size variability
Simple batch workloads (n=10, CoV={L,M,H})
Dynamic online arrivals (n=100…1000)

Metrics: response time and energy cost
Comparison to decoupled speed scaling
Comparison to YDS approach
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Simulation Results: Example

PSFSP-PS

FSP

T-FSP

YDS
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Summary (so far)

Naïve turbocharging of FSP won’t work
Envelope-based turbocharging can work
Promising approach, and perhaps more 

practical than decoupled speed scaling
Energy costs are slightly higher though

Cognate work: experimental evaluation 
and comparison of speed scaling policies
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Typical Modeling Assumptions

 Single-server queue for CPU service
 Initial batch of n jobs at time 0
 Job sizes known in advance
Dynamic CPU speed scaling model
 Job-count based: s = f(n) = n1/α (1 ≤ α ≤ 3)

Continuous and unbounded speeds
No cost for context-switches or speed changes

Memory-less property (arrivals and service)
Metrics: response time, energy cost
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Experimental Results [Skrenes 2016]
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 Micro-benchmarking experiments by MSc student Arsham Skrenes

 Fine-grain energy measurements using RAPL MSRs

 Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor

 12 discrete speeds ranging from 1200 MHz to 2300 MHz

 Reported results are the mean from 10 replications (error < 2%)

 Ubuntu Linux

 Default governors:

▫ performance: use max frequency available

▫ powersave: use min frequency available

▫ ondemand: dynamic using up/down thresholds

▫ conservative: like ondemand, but gradual increase

▫ userspace: user-defined control
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Frequency
(MHz)

PP0 
(W)

PKG 
(W)

Context
Switch (us)

Mode 
Switch (ns)

Speed
Switch (us)

2301 (3300) 11.5 15.3 1.140 44.8 0.76

2300 5.4 9.2 1.634 64.2 1.09

2200 5.0 8.9 1.708 67.0 1.14

2100 4.8 8.6 1.808 70.2 1.20

2000 4.6 8.4 1.898 73.7 1.26

1900 4.5 8.3 1.999 78.3 1.32

1800 4.3 8.0 2.118 81.9 1.38

1700 4.1 7.9 2.213 86.7 1.47

1600 3.9 7.6 2.369 92.1 1.56

1500 3.7 7.5 2.526 98.6 1.67

1400 3.5 7.3 2.709 105.3 1.81

1300 3.3 7.1 2.886 113.4 1.93

1200 3.1 6.9 3.167 123.1 2.09



Speed Scaling Results [Skrenes 2016]

Policy Time 

(s)

E[T]   

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

PS 14.57 14.49 76.80 131.50 46.23 30.10 199.99 372.98 166.15 38.05 562.47 1184.36

FSP-PS 14.57 1.21 76.77 131.60 46.21 3.85 199.41 372.36 166.08 13.84 560.35 1180.83

YDS 14.55 1.21 76.49 130.93 45.80 3.82 198.83 369.88 163.12 13.59 560.94 1170.05
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Homogeneous Job Sizes         Linear Job Sizes          Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz



Speed Scaling Results [Skrenes 2016]

Policy Time 

(s)

E[T]   

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.10 199.99 372.98 166.15 38.05 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 3.85 199.41 372.36 166.08 13.84 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 3.82 198.83 369.88 163.12 13.59 560.94 1170.05
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Homogeneous Job Sizes         Linear Job Sizes          Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz



Speed Scaling Results [Skrenes 2016]

Policy Time 

(s)

E[T]   

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.16 199.99 372.98 166.15 38.05 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 16.33 199.41 372.36 166.08 13.84 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 17.81 198.83 369.88 163.12 13.59 560.94 1170.05
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Homogeneous Job Sizes         Linear Job Sizes          Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz



Speed Scaling Results [Skrenes 2016]

Policy Time 

(s)

E[T]   

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.16 199.99 372.98 166.15 38.10 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 16.33 199.41 372.36 166.08 25.43 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 17.81 198.83 369.88 163.12 27.15 560.94 1170.05

Page 44

44

Homogeneous Job Sizes         Linear Job Sizes          Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz



Speed Scaling Results [Skrenes 2016]

Policy Time 

(s)

E[T]   

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.16 199.99 372.98 166.15 38.10 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 16.33 199.41 372.36 166.08 25.43 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 17.81 198.83 369.88 163.12 27.15 560.94 1170.05
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Homogeneous Job Sizes         Linear Job Sizes          Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz

Observation 1:  Decoupled speed scaling (FSP-PS) provides  a significant response
time advantage over PS, for the “same” energy costs



Speed Scaling Results [Skrenes 2016]

Policy Time 

(s)

E[T]   

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.16 199.99 372.98 166.15 38.10 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 16.33 199.41 372.36 166.08 25.43 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 17.81 198.83 369.88 163.12 27.15 560.94 1170.05
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Homogeneous Job Sizes         Linear Job Sizes          Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz

Observation 2:  The response time advantage of FSP-PS decreases as job size
variability increases



Speed Scaling Results [Skrenes 2016]

Policy Time 

(s)

E[T]   

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.16 199.99 372.98 166.15 38.10 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 16.33 199.41 372.36 166.08 25.43 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 17.81 198.83 369.88 163.12 27.15 560.94 1170.05
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Homogeneous Job Sizes         Linear Job Sizes          Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz

Observation 3:  FSP-PS has a slight energy advantage over PS because of fewer
context switches between jobs



Speed Scaling Results [Skrenes 2016]

Policy Time 

(s)

E[T]   

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

Time 

(s)

E[T] 

(s)

PP0 

(J)

PKG 

(J)

PS 14.57 14.55 76.80 131.50 46.23 30.16 199.99 372.98 166.15 38.10 562.47 1184.36

FSP-PS 14.57 7.89 76.77 131.60 46.21 16.33 199.41 372.36 166.08 25.43 560.35 1180.83

YDS 14.55 7.88 76.49 130.93 45.80 17.81 198.83 369.88 163.12 27.15 560.94 1170.05
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Homogeneous Job Sizes         Linear Job Sizes          Multiplicative Job Sizes

Profilo results for batch of n = 12 jobs on Ubuntu Linux system
Platform: 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor
12 discrete speeds ranging from 1200 MHz to 2300 MHz

Observation 4:  YDS has the lowest energy consumption among these policies
(even better than expected due to discretization effect, and no speed changes)
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Summary and Conclusions
There is a broad and diverse set of 

literature on speed scaling systems over 
the past 20+ years

There is a dichotomy between theoretical 
work and systems work on speed scaling

Modern processors provide surprisingly 
rich functionality for speed scaling that is 
not yet well exploited by systems software
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Future Directions
Cost function for speed scaling optimization

Redefining the benchmark for fairness

Extending PSBS to speed scaling scenario

Autoscaling effects and overload regimes

Practical schedulers and speed scalers for 
modern operating systems that better exploit 
the available hardware features

Speed scaling policies on multi-core systems
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The End

Thank you!

Questions?
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